Spelling suggestions: "subject:"flipflop"" "subject:"flipflops""
21 |
Low Complexity and Low Power Bit-Serial Multipliers / Bitseriella multiplikatorer med låg komplexitet och låg effektförbrukningJohansson, Kenny January 2003 (has links)
Bit-serial multiplication with a fixed coefficient is commonly used in integrated circuits, such as digital filters and FFTs. These multiplications can be implemented using basic components such as adders, subtractors and D flip-flops. Multiplication with the same coefficient can be implemented in many ways, using different structures. Other studies in this area have focused on how to minimize the number of adders/subtractors, and often assumed that the cost for D flip-flops is neglectable. That simplification has been proved to be far too great, and further not at all necessary. In digital devices low power consumption is always desirable. How to attain this in bit-serial multipliers is a complex problem. The aim of this thesis was to find a strategy on how to implement bit-serial multipliers with as low cost as possible. An important step was achieved by deriving formulas that can be used to calculate the carry switch probability in the adders/subtractors. It has also been established that it is possible to design a power model that can be applied to all possible structures of bit- serial multipliers.
|
22 |
Protecting digital circuits against hold time violations due to process variationsNeuberger, Gustavo January 2007 (has links)
Com o desenvolvimento da tecnologia CMOS, os circuitos estão ficando cada vez mais sujeitos a variabilidade no processo de fabricação. Variações estatísticas de processo são um ponto crítico para estratégias de projeto de circuitos para garantir um yield alto em tecnologias sub-100nm. Neste trabalho apresentamos uma técnica de medida on-chip para caracterizar violações de tempo de hold de flip-flops em caminhos lógicos curtos, que são geradas por incertezas de borda de relógio em projetos síncronos. Usando um circuito programável preciso de geração de skew de relógio, uma resolução de medida de ~1ps é alcançada para emular condições de corrida. Variações estatísticas de violações de tempo de hold são medidas em tecnologias CMOS de 130nm e 90nm para diversas configurações de circuitos, e também para diferentes condições de temperatura e Vdd. Essas violações são um ponto crítico em projetos grandes com milhares de caminhos curtos, pois se apenas um desses caminhos falhar, todo o circuito não vai funcionar em qualquer freqüência. Usando os resultados medidos, a variabilidade é dividida entre sistemática e randômica residual usando métodos matemáticos. Testes de normalidade são aplicados a estes dados para verificar de eles são Gaussianos normais ou não. A probabilidade de violações de tempo de hold considerando nossos resultados medidos e skews de relógio típicos é calculada, mostrando que o problema de violações de tempo de hold aumenta com o avanço da tecnologia. Finalmente, um algoritmo para proteger circuitos digitais contra violações de tempo de hold em caminhos curtos é apresentado. / With the shrinking of CMOS technology, the circuits are more and more subject to variability in the fabrication process. Statistical process variations are a critical issue for circuit design strategies to ensure high yield in sub-100nm technologies. In this work we present an on-chip measurement technique to characterize hold time violations of flip-flops in short logic paths, which are generated by clock-edge uncertainties in synchronous designs. Using a precise programmable clock-to-data skew generation circuit, a measurement resolution of ~1ps is achieved to emulate race conditions. Statistical variations of hold time violations are measured in a 130nm and 90nm lowpower CMOS technology for various register-to-register configurations, and also different conditions of temperature and Vdd. These violations are a critical issue in large designs with thousands of short paths, as if only one of these fails, the whole circuit will not work at any frequency. Using the measured results, the variability is divided between systematic and random residual using mathematical methods. Normality tests are applied to this data to check if they are normal Gaussians or not. The probability of hold time violations considering our measured data and typical clock skews is calculated, showing that the problem of hold time violations is increasing with technologic advances. Finally, an algorithm to protect digital circuits against hold time violations in short paths is presented.
|
23 |
Protecting digital circuits against hold time violations due to process variationsNeuberger, Gustavo January 2007 (has links)
Com o desenvolvimento da tecnologia CMOS, os circuitos estão ficando cada vez mais sujeitos a variabilidade no processo de fabricação. Variações estatísticas de processo são um ponto crítico para estratégias de projeto de circuitos para garantir um yield alto em tecnologias sub-100nm. Neste trabalho apresentamos uma técnica de medida on-chip para caracterizar violações de tempo de hold de flip-flops em caminhos lógicos curtos, que são geradas por incertezas de borda de relógio em projetos síncronos. Usando um circuito programável preciso de geração de skew de relógio, uma resolução de medida de ~1ps é alcançada para emular condições de corrida. Variações estatísticas de violações de tempo de hold são medidas em tecnologias CMOS de 130nm e 90nm para diversas configurações de circuitos, e também para diferentes condições de temperatura e Vdd. Essas violações são um ponto crítico em projetos grandes com milhares de caminhos curtos, pois se apenas um desses caminhos falhar, todo o circuito não vai funcionar em qualquer freqüência. Usando os resultados medidos, a variabilidade é dividida entre sistemática e randômica residual usando métodos matemáticos. Testes de normalidade são aplicados a estes dados para verificar de eles são Gaussianos normais ou não. A probabilidade de violações de tempo de hold considerando nossos resultados medidos e skews de relógio típicos é calculada, mostrando que o problema de violações de tempo de hold aumenta com o avanço da tecnologia. Finalmente, um algoritmo para proteger circuitos digitais contra violações de tempo de hold em caminhos curtos é apresentado. / With the shrinking of CMOS technology, the circuits are more and more subject to variability in the fabrication process. Statistical process variations are a critical issue for circuit design strategies to ensure high yield in sub-100nm technologies. In this work we present an on-chip measurement technique to characterize hold time violations of flip-flops in short logic paths, which are generated by clock-edge uncertainties in synchronous designs. Using a precise programmable clock-to-data skew generation circuit, a measurement resolution of ~1ps is achieved to emulate race conditions. Statistical variations of hold time violations are measured in a 130nm and 90nm lowpower CMOS technology for various register-to-register configurations, and also different conditions of temperature and Vdd. These violations are a critical issue in large designs with thousands of short paths, as if only one of these fails, the whole circuit will not work at any frequency. Using the measured results, the variability is divided between systematic and random residual using mathematical methods. Normality tests are applied to this data to check if they are normal Gaussians or not. The probability of hold time violations considering our measured data and typical clock skews is calculated, showing that the problem of hold time violations is increasing with technologic advances. Finally, an algorithm to protect digital circuits against hold time violations in short paths is presented.
|
24 |
Redundant Skewed Clocking of Pulse-Clocked Latches for Low Power Soft-Error MitigationJanuary 2015 (has links)
abstract: An integrated methodology combining redundant clock tree synthesis and pulse clocked latches mitigates both single event upsets (SEU) and single event transients (SET) with reduced power consumption. This methodology helps to change the hardness of the design on the fly. This approach, with minimal additional overhead circuitry, has the ability to work in three different modes of operation depending on the speed, hardness and power consumption required by design. This was designed on 90nm low-standby power (LSP) process and utilized commercial CAD tools for testing. Spatial separation of critical nodes in the physical design of this approach mitigates multi-node charge collection (MNCC) upsets. An advanced encryption system implemented with the proposed design, compared to a previous design with non-redundant clock trees and local delay generation. The proposed approach reduces energy per operation up to 18% over an improved version of the prior approach, with negligible area impact. It can save up to 2/3rd of the power consumption and reach maximum possible frequency, when used in non-redundant mode of operation. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2015
|
25 |
Embedding Logic and Non-volatile Devices in CMOS Digital Circuits for Improving Energy EfficiencyJanuary 2018 (has links)
abstract: Static CMOS logic has remained the dominant design style of digital systems for
more than four decades due to its robustness and near zero standby current. Static
CMOS logic circuits consist of a network of combinational logic cells and clocked sequential
elements, such as latches and flip-flops that are used for sequencing computations
over time. The majority of the digital design techniques to reduce power, area, and
leakage over the past four decades have focused almost entirely on optimizing the
combinational logic. This work explores alternate architectures for the flip-flops for
improving the overall circuit performance, power and area. It consists of three main
sections.
First, is the design of a multi-input configurable flip-flop structure with embedded
logic. A conventional D-type flip-flop may be viewed as realizing an identity function,
in which the output is simply the value of the input sampled at the clock edge. In
contrast, the proposed multi-input flip-flop, named PNAND, can be configured to
realize one of a family of Boolean functions called threshold functions. In essence,
the PNAND is a circuit implementation of the well-known binary perceptron. Unlike
other reconfigurable circuits, a PNAND can be configured by simply changing the
assignment of signals to its inputs. Using a standard cell library of such gates, a technology
mapping algorithm can be applied to transform a given netlist into one with
an optimal mixture of conventional logic gates and threshold gates. This approach
was used to fabricate a 32-bit Wallace Tree multiplier and a 32-bit booth multiplier
in 65nm LP technology. Simulation and chip measurements show more than 30%
improvement in dynamic power and more than 20% reduction in core area.
The functional yield of the PNAND reduces with geometry and voltage scaling.
The second part of this research investigates the use of two mechanisms to improve
the robustness of the PNAND circuit architecture. One is the use of forward and reverse body biases to change the device threshold and the other is the use of RRAM
devices for low voltage operation.
The third part of this research focused on the design of flip-flops with non-volatile
storage. Spin-transfer torque magnetic tunnel junctions (STT-MTJ) are integrated
with both conventional D-flipflop and the PNAND circuits to implement non-volatile
logic (NVL). These non-volatile storage enhanced flip-flops are able to save the state of
system locally when a power interruption occurs. However, manufacturing variations
in the STT-MTJs and in the CMOS transistors significantly reduce the yield, leading
to an overly pessimistic design and consequently, higher energy consumption. A
detailed analysis of the design trade-offs in the driver circuitry for performing backup
and restore, and a novel method to design the energy optimal driver for a given yield is
presented. Efficient designs of two nonvolatile flip-flop (NVFF) circuits are presented,
in which the backup time is determined on a per-chip basis, resulting in minimizing
the energy wastage and satisfying the yield constraint. To achieve a yield of 98%,
the conventional approach would have to expend nearly 5X more energy than the
minimum required, whereas the proposed tunable approach expends only 26% more
energy than the minimum. A non-volatile threshold gate architecture NV-TLFF are
designed with the same backup and restore circuitry in 65nm technology. The embedded
logic in NV-TLFF compensates performance overhead of NVL. This leads to the
possibility of zero-overhead non-volatile datapath circuits. An 8-bit multiply-and-
accumulate (MAC) unit is designed to demonstrate the performance benefits of the
proposed architecture. Based on the results of HSPICE simulations, the MAC circuit
with the proposed NV-TLFF cells is shown to consume at least 20% less power and
area as compared to the circuit designed with conventional DFFs, without sacrificing
any performance. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2018
|
26 |
Protecting digital circuits against hold time violations due to process variationsNeuberger, Gustavo January 2007 (has links)
Com o desenvolvimento da tecnologia CMOS, os circuitos estão ficando cada vez mais sujeitos a variabilidade no processo de fabricação. Variações estatísticas de processo são um ponto crítico para estratégias de projeto de circuitos para garantir um yield alto em tecnologias sub-100nm. Neste trabalho apresentamos uma técnica de medida on-chip para caracterizar violações de tempo de hold de flip-flops em caminhos lógicos curtos, que são geradas por incertezas de borda de relógio em projetos síncronos. Usando um circuito programável preciso de geração de skew de relógio, uma resolução de medida de ~1ps é alcançada para emular condições de corrida. Variações estatísticas de violações de tempo de hold são medidas em tecnologias CMOS de 130nm e 90nm para diversas configurações de circuitos, e também para diferentes condições de temperatura e Vdd. Essas violações são um ponto crítico em projetos grandes com milhares de caminhos curtos, pois se apenas um desses caminhos falhar, todo o circuito não vai funcionar em qualquer freqüência. Usando os resultados medidos, a variabilidade é dividida entre sistemática e randômica residual usando métodos matemáticos. Testes de normalidade são aplicados a estes dados para verificar de eles são Gaussianos normais ou não. A probabilidade de violações de tempo de hold considerando nossos resultados medidos e skews de relógio típicos é calculada, mostrando que o problema de violações de tempo de hold aumenta com o avanço da tecnologia. Finalmente, um algoritmo para proteger circuitos digitais contra violações de tempo de hold em caminhos curtos é apresentado. / With the shrinking of CMOS technology, the circuits are more and more subject to variability in the fabrication process. Statistical process variations are a critical issue for circuit design strategies to ensure high yield in sub-100nm technologies. In this work we present an on-chip measurement technique to characterize hold time violations of flip-flops in short logic paths, which are generated by clock-edge uncertainties in synchronous designs. Using a precise programmable clock-to-data skew generation circuit, a measurement resolution of ~1ps is achieved to emulate race conditions. Statistical variations of hold time violations are measured in a 130nm and 90nm lowpower CMOS technology for various register-to-register configurations, and also different conditions of temperature and Vdd. These violations are a critical issue in large designs with thousands of short paths, as if only one of these fails, the whole circuit will not work at any frequency. Using the measured results, the variability is divided between systematic and random residual using mathematical methods. Normality tests are applied to this data to check if they are normal Gaussians or not. The probability of hold time violations considering our measured data and typical clock skews is calculated, showing that the problem of hold time violations is increasing with technologic advances. Finally, an algorithm to protect digital circuits against hold time violations in short paths is presented.
|
27 |
Low-Power Multi-GHz Circuit Techniques for On-chip ClockingHansson, Martin January 2006 (has links)
The impressive evolution of modern high-performance microprocessors have resulted in chips with over one billion transistors as well as multi-GHz clock frequencies. As the silicon integrated circuit industry moves further into the nanometer regime, three of the main challenges to overcome in order for continuing CMOS technology scaling are; growing standby power dissipation, increasing variations in process parameters, and increasing power dissipation due to growing clock load and circuit complexity. This thesis addresses all three of these future scaling challenges with the overall focus on reducing the total clock-power for low-power, multi-GHz VLSI circuits. Power-dissipation related to the clock generation and distribution is identified as the dominating contributor of the total active power dissipation. This makes novel power reduction techniques crucial in future VLSI design. This thesis describes a new energy-recovering clocking technique aimed at reducing the total chip clock-power. The proposed technique consumes 2.3x lower clock-power compared to conventional clocking at a clock frequency of 1.56 GHz. Apart from increasing power dissipation due to leakage also the robustness constraints for circuits are impacted by the increasing leakage. To improve the leakage robustness for sub-90 nm low clock load dynamic flip-flops a novel keeper technique is proposed. The proposed keeper utilizes a scalable and simple leakage compensation technique. During any low frequency operation, the flip-flop is configured as a static flip-flop with increased functional robustness. In order to compensate the impact of the increasingly large process variations on latches and flip-flops, a reconfigurable keeper technique is presented in this thesis. In contrast to the traditional design for worst-case process corners, a variable keeper circuit is utilized. The proposed reconfigurable keeper preserves the robustness of storage nodes across the process corners without degrading the overall chip performance. / Report code: LiU-TEK-LIC-2006:21.
|
28 |
Likelihood ratio tests of separable or double separable covariance structure, and the empirical null distributionGottfridsson, Anneli January 2011 (has links)
The focus in this thesis is on the calculations of an empirical null distributionfor likelihood ratio tests testing either separable or double separable covariancematrix structures versus an unstructured covariance matrix. These calculationshave been performed for various dimensions and sample sizes, and are comparedwith the asymptotic χ2-distribution that is commonly used as an approximative distribution. Tests of separable structures are of particular interest in cases when data iscollected such that more than one relation between the components of the observationis suspected. For instance, if there are both a spatial and a temporalaspect, a hypothesis of two covariance matrices, one for each aspect, is reasonable.
|
29 |
Methodical Design Approaches to Multiple Node Collection Robustness for Flip-Flop Soft Error MItigationJanuary 2015 (has links)
abstract: The space environment comprises cosmic ray particles, heavy ions and high energy electrons and protons. Microelectronic circuits used in space applications such as satellites and space stations are prone to upsets induced by these particles. With transistor dimensions shrinking due to continued scaling, terrestrial integrated circuits are also increasingly susceptible to radiation upsets. Hence radiation hardening is a requirement for microelectronic circuits used in both space and terrestrial applications.
This work begins by exploring the different radiation hardened flip-flops that have been proposed in the literature and classifies them based on the different hardening techniques.
A reduced power delay element for the temporal hardening of sequential digital circuits is presented. The delay element single event transient tolerance is demonstrated by simulations using it in a radiation hardened by design master slave flip-flop (FF). Using the proposed delay element saves up to 25% total FF power at 50% activity factor. The delay element is used in the implementation of an 8-bit, 8051 designed in the TSMC 130 nm bulk CMOS.
A single impinging ionizing radiation particle is increasingly likely to upset multiple circuit nodes and produce logic transients that contribute to the soft error rate in most modern scaled process technologies. The design of flip-flops is made more difficult with increasing multi-node charge collection, which requires that charge storage and other sensitive nodes be separated so that one impinging radiation particle does not affect redundant nodes simultaneously. We describe a correct-by-construction design methodology to determine a-priori which hardened FF nodes must be separated, as well as a general interleaving scheme to achieve this separation. We apply the methodology to radiation hardened flip-flops and demonstrate optimal circuit physical organization for protection against multi-node charge collection.
Finally, the methodology is utilized to provide critical node separation for a new hardened flip-flop design that reduces the power and area by 31% and 35% respectively compared to a temporal FF with similar hardness. The hardness is verified and compared to other published designs via the proposed systematic simulation approach that comprehends multiple node charge collection and tests resiliency to upsets at all internal and input nodes. Comparison of the hardness, as measured by estimated upset cross-section, is made to other published designs. Additionally, the importance of specific circuit design aspects to achieving hardness is shown. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2015
|
30 |
Time to Digital Converter used in ALL digital PLLYao, Chen January 2011 (has links)
This thesis proposes and demonstrates Time to Digital Converters (TDC) with high resolution realized in 65-nm digital CMOS. It is used as a phase detector in all digital PLL working with 5GHz DCO and 20MHz reference input for radio transmitters. Two kinds of high resolution TDC are designed on schematic level including Vernier TDC and parallel TDC. The Sensed Amplifier Flip Flop (SAFF) is implemented with less than 1ps sampling window to avoid metastability. The current starved delay elements are adopted in the TDC and the conversion resolution is equal to the difference of the delay time from these delay elements. Furthermore, the parallel TDC is realized on layout and finally achieves the resolution of 3ps meanwhile it consumes average power 442μW with 1.2V power supply. Measured integral nonlinearity and differential nonlinearity are 0.5LSB and 0.33LSB respectively.
|
Page generated in 0.0345 seconds