• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 8
  • 8
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On quantum chaos, stochastic webs and localization in a quantum mechanical kick system

Engel, Ulf Martin January 2003 (has links)
Zugl.: Münster (Westfalen), Univ., Diss., 2003
2

Periodic manifolds, spectral gaps, and eigenvalues in gaps

Post, Olaf. Unknown Date (has links) (PDF)
Techn. University, Diss., 2000--Braunschweig.
3

Vergleichsmethoden und Hyperbolizität für periodische Orbits bei positiver, verzögerter Rückkopplung

Gombert, Martin Wilhelm. Gombert, Martin W. Unknown Date (has links)
Universiẗat, Diss., 2003--Giessen.
4

Correlated Topological Responses In Dynamical Synthetic Quantum Matter / Korrelierte topologische Antwortsignale in dynamischer synthetischer Quantenmaterie

Körber, Simon Erhard January 2023 (has links) (PDF)
The last years have witnessed an exciting scientific quest for intriguing topological phenomena in time-dependent quantum systems. A key to many manifestations of topology in dynamical systems relies on the effective dimensional extension by time-periodic drives. An archetypal example is provided by the Thouless pump in one spatial dimension, where a robust and quantized charge transport can be described in terms of an integer quantum Hall effect upon interpreting time as an extra dimension. Generalizing this fundamental concept to multifrequency driving, a variety of higher-dimensional topological models can be engineered in dynamical synthetic dimensions, where the underlying topological classification leads to quantized pumping effects in the associated lower-dimensional time-dependent systems. In this Thesis, we explore how correlations profoundly impact the topological features of dynamical synthetic quantum materials. More precisely, we demonstrate that the interplay of interaction and dynamical synthetic dimension gives rise to striking topological phenomena that go beyond noninteracting implementations. As a starting point, we exploit the Floquet counterpart of an integer quantum Hall scenario, namely a two-level system driven by two incommensurate frequencies. In this model, the topologically quantized response translates into a process in which photons of different frequencies are exchanged between the external modes, referred to as topological frequency conversion. We extend this prototypical setup to an interacting version, focusing on the minimal case of two correlated spins equally exposed to the external drives. We show that the topological invariant determining the frequency conversion can be changed by odd integers, something explicitly forbidden in the noninteracting limit of two identical spins. This correlated topological feature may, in turn, result in an enhancement of the quantized response. Robust response signals, such as those predicted for the topological frequency converter, are of fundamental interest for potential technological applications of topological quantum matter. Based on an open quantum system implementation of the frequency converter, we propose a novel mechanism of topological quantization coined ''topological burning glass effect''. Remarkably, this mechanism amplifies the local response of the driven two-level system by an integer that is proportional to the number of environmental degrees of freedom to which the system is strongly coupled. Specifically, our findings are illustrated by the extension of the frequency converter to a central spin model. There, the local energy transfer mediated exclusively by the central spin is significantly enhanced by the collective motion of the surrounding spins. In this sense, the central spin adopts the topological nature of the total system in its non-unitary dynamics, taking into account the correlations with the environment. / In den letzten Jahren hat sich eine spannende Suche nach faszinierenden topologischen Phänomenen in zeitabhängigen Quantensystemen entwickelt. Ein Schlüssel zu zahlreichen Ausprägungen der Topologie in dynamischen Systemen beruht auf der effektiven Dimensionserweiterung durch zeitlich-periodische Antriebe. Ein Beispiel ist die Thouless-Pumpe in einer räumlichen Dimension, in der ein robuster und quantisierter Ladungstransport mittels eines Quanten-Hall-Effekts beschrieben werden kann, sofern Zeit als zusätzliche Dimension interpretiert wird. Durch Verallgemeinerung dieses Grundkonzepts auf Multifrequenzantriebe kann eine Vielzahl höherdimensionaler topologischer Modelle in zeitlich synthetischen Dimensionen konstruiert werden, bei denen die zugrunde liegende topologische Klassifikation zu quantisierten Pumpeffekten in den zugehörigen niederdimensionalen zeitabhängigen Systemen führt. In dieser Dissertation wird untersucht, wie Korrelationen die topologischen Eigenschaften von zeitlich synthetischen Quantenmaterialen maßgeblich beeinflussen. Konkret wird gezeigt, dass das Zusammenspiel von Wechselwirkung und zeitlicher synthetischer Dimension zu erstaunlichen topologischen Phänomenen führt, die über nicht-wechselwirkende Realisierungen hinausgehen. Als Ausgangspunkt wird das Floquet-Gegenstück eines Quanten-Hall-Szenarios genutzt, ein Zwei-Niveau-System, das von zwei inkommensurablen Frequenzen getrieben wird. In diesem Modell spiegelt sich die topologisch quantisierte Antwort in einen Prozess wider, bei dem Photonen verschiedener Frequenzen zwischen den externen Moden ausgetauscht werden, auch bekannt als topologische Frequenzumwandlung. Wir erweitern dieses prototypische Setup auf eine interagierende Version, indem wir uns auf den Minimalfall zweier korrelierter Spins konzentrieren, die gleichermaßen den externen Antrieben ausgesetzt sind. Wir zeigen, dass die topologische Invariante, die die Frequenzumwandlung bestimmt, durch ungerade ganze Zahlen verändert werden kann. Ein Zustand, der im nicht-wechselwirkenden Fall ausdrücklich verboten ist. Dieses korrelierte topologische Verhalten kann wiederum zu einer Verstärkung der quantisierten Antwort führen. Robuste Antwortsignale, wie sie für den topologischen Frequenzumwandler vorhergesagt werden, sind von grundlegendem Interesse für potentielle technologische Anwendungen der topologischen Quantenmaterie. Basierend auf einer offenen Quantensystem-Realisierung des Frequenzumwandlers schlagen wir einen neuartigen Mechanismus der topologischen Quantisierung vor, den wir als ''topologischen Brennglaseffekt'' bezeichnen. Dieser Mechanismus verstärkt die lokale Antwort des getriebenen Zwei-Niveau-Systems um eine ganze Zahl, die proportional zur Anzahl der Freiheitsgrade der Umgebung ist, an die das System koppelt. Konkret werden unsere Erkenntnisse durch die Erweiterung des Frequenzumwandlers auf ein Zentralspinmodell veranschaulicht. Der lokale Energietransfer, der ausschließlich durch den zentralen Spin vermittelt wird, wird durch die kollektive Bewegung der umgebenden Spins maßgeblich verstärkt. In diesem Sinne erbt der Zentralspin die topologische Natur des Gesamtsystems in seiner nicht-unitären Dynamik, die die Korrelationen mit der Umgebung berücksichtigt.
5

Non-adiabatic quantum molecular dynamics: - Benchmark systems in strong laser fields - Approximate electron-nuclear correlations

Fischer, Michael 05 August 2014 (has links) (PDF)
The non-adiabatic quantum molecular dynamics (NA-QMD) method couples self-consistently classical nuclear motion with time-dependent density functional theory (TDDFT) in basis expansion for the electron dynamics. It has become a versatile approach to study the dynamics of atoms, molecules and clusters in a wide range of scenarios. This work presents applications of the NA-QMD method to important benchmark systems and its systematic extension to include quantum effects in the nuclear motion. Regarding the first objective, a complete study of the strong-field ionization and dissociation dynamics of nature’s simplest molecule H2+ is performed. By including all electronic and nuclear degrees of freedom and all reaction channels, molecular rotation is shown to play an important role in the ionization process. In addition, strong orientation effects in the energy deposition process of the Buckminster fullerene C60 in short intense laser pulses are surprisingly found in full dimensional calculations. Their consequences on the subsequent nuclear relaxation dynamics shed new light on available experimental data and future experiments are proposed to confirm the detailed predictions. Regarding the second objective, the NA-QMD formalism is basically extended to take electron-nuclear correlations into account. This extension is achieved by means of a trajectory surface hopping scheme in the adiabatic Kohn-Sham framework. First studied examples from collision physics and photochemistry illustrate the relevance and importance of quantum effects in the nuclear dynamics.
6

Non-adiabatic quantum molecular dynamics: - Benchmark systems in strong laser fields - Approximate electron-nuclear correlations: Non-adiabatic quantum molecular dynamics: - Benchmark systems in strong laser fields - Approximate electron-nuclear correlations

Fischer, Michael 04 July 2014 (has links)
The non-adiabatic quantum molecular dynamics (NA-QMD) method couples self-consistently classical nuclear motion with time-dependent density functional theory (TDDFT) in basis expansion for the electron dynamics. It has become a versatile approach to study the dynamics of atoms, molecules and clusters in a wide range of scenarios. This work presents applications of the NA-QMD method to important benchmark systems and its systematic extension to include quantum effects in the nuclear motion. Regarding the first objective, a complete study of the strong-field ionization and dissociation dynamics of nature’s simplest molecule H2+ is performed. By including all electronic and nuclear degrees of freedom and all reaction channels, molecular rotation is shown to play an important role in the ionization process. In addition, strong orientation effects in the energy deposition process of the Buckminster fullerene C60 in short intense laser pulses are surprisingly found in full dimensional calculations. Their consequences on the subsequent nuclear relaxation dynamics shed new light on available experimental data and future experiments are proposed to confirm the detailed predictions. Regarding the second objective, the NA-QMD formalism is basically extended to take electron-nuclear correlations into account. This extension is achieved by means of a trajectory surface hopping scheme in the adiabatic Kohn-Sham framework. First studied examples from collision physics and photochemistry illustrate the relevance and importance of quantum effects in the nuclear dynamics.
7

Frequency domain methods for the analysis of time delay systems

Otto, Andreas 19 August 2016 (has links) (PDF)
In this thesis a new frequency domain approach for the analysis of time delay systems is presented. After linearization of a nonlinear delay differential equation (DDE) with constant distributed delay around a constant or periodic reference solution the so-called Hill-Floquet method can be used for the analysis of the resulting linear DDE. In addition, systems with fast or slowly time-varying delays, systems with variable transport delays originating from a transport with variable velocity, and the corresponding spatially extended systems are presented, which can be also analyzed with the presented method. The newly introduced Hill-Floquet method is based on the Hill’s infinite determinant method and enables the transformation of a system with periodic coefficients to an autonomous system with constant coefficients. This makes the usage of a variety of existing methods for autonomous systems available for the analysis of periodic systems, which implies that the typical calculation of the monodromy matrix for the time evolution of the solution over the principle period is no longer required. In this thesis, the Chebyshev collocation method is used for the analysis of the autonomous systems. Specifically, in this case the periodic part of the solution is expanded in a Fourier series and the exponential behavior of the solution is approximated by the discrete values of the Fourier coefficients at the Chebyshev nodes, whereas in classical spectral or pseudo-spectral methods for the analysis of linear periodic DDEs the complete solution is expanded in terms of basis functions. In the last part of this thesis, new results for three applications with time delay effects are presented, which were analyzed with the presented methods. On the one hand, the occurrence of diffusion-driven instabilities in reaction-diffusion systems with delay is investigated. It is shown that wave instabilities are possible already for single-species reaction diffusion systems with distributed or time-varying delay. On the other hand, the stability of metal cutting vibrations at machine tools is analyzed. In particular, parallel orthogonal turning processes with multiple discrete delays and turning processes with a time-varying delay due to a spindle speed variation are studied. Finally, the stability of the synchronized solution in networks with heterogeneous coupling delays is studied. In particular, the eigenmode expansion for synchronized periodic orbits is derived, which includes an extension of the classical master stability function to networks with heterogeneous coupling delays. Numerical results are shown for a network of Hodgkin-Huxley neurons with two delays in the coupling. / In dieser Dissertation wird ein neues Verfahren zur Analyse von Systemen mit Totzeiten im Frequenzraum vorgestellt. Nach Linearisierung einer nichtlinearen retardierten Differentialgleichung (DDE) mit konstanter verteilter Totzeit um eine konstante oder periodische Referenzlösung kann die sogenannte Hill-Floquet Methode für die Analyse der resultierende linearen DDE angewendet werden. Darüber hinaus werden Systeme mit schnell oder langsam variierender Totzeit, Systeme mit einer variablen Totzeit, resultierend aus einem Transport mit variabler Geschwindigkeit, und entsprechende räumlich ausgedehnte Systeme vorgestellt, welche ebenfalls mit der vorgestellten Methode analysiert werden können. Die neu eingeführte Hill-Floquet Methode basiert auf der Hillschen unendlichen Determinante und ermöglicht die Transformation eines Systems mit periodischen Koeffizienten auf ein autonomes System mit konstanten Koeffizienten. Dadurch können zur Analyse periodischer Systeme auch eine Vielzahl existierender Methoden für autonome Systeme genutzt werden und die Berechnung der Monodromie-Matrix für die Lösung des Systems über eine Periode entfällt. In dieser Arbeit wird zur Analyse des autonomen Systems die Tschebyscheff-Kollokationsmethode verwendet. Im Speziellen wird bei diesem Verfahren der periodische Teil der Lösung in einer Fourierreihe entwickelt und das exponentielle Verhalten durch die Werte der Fourierkoeffizienten an den Tschebyscheff Knoten approximiert, wohingegen bei klassischen spektralen Verfahren die komplette Lösung in bestimmten Basisfunktionen entwickelt wird. Im Anwendungsteil der Arbeit werden neue Ergebnisse für drei Beispielsysteme präsentiert, welche mit den vorgestellten Methoden analysiert wurden. Es wird gezeigt, dass Welleninstabilitäten schon bei Einkomponenten-Reaktionsdiffusionsgleichungen mit verteilter oder variabler Totzeit auftreten können. In einem zweiten Beispiel werden Schwingungen an Werkzeugmaschinen betrachtet, wobei speziell simultane Drehbearbeitungsprozesse und Prozesse mit Drehzahlvariationen genauer untersucht werden. Am Ende wird die Synchronisation in Netzwerken mit heterogenen Totzeiten in den Kopplungstermen untersucht, wobei die Zerlegung in Netzwerk-Eigenmoden für synchrone periodische Orbits hergeleitet wird und konkrete numerische Ergebnisse für ein Netzwerk aus Hodgkin-Huxley Neuronen gezeigt werden.
8

Frequency domain methods for the analysis of time delay systems

Otto, Andreas 06 July 2016 (has links)
In this thesis a new frequency domain approach for the analysis of time delay systems is presented. After linearization of a nonlinear delay differential equation (DDE) with constant distributed delay around a constant or periodic reference solution the so-called Hill-Floquet method can be used for the analysis of the resulting linear DDE. In addition, systems with fast or slowly time-varying delays, systems with variable transport delays originating from a transport with variable velocity, and the corresponding spatially extended systems are presented, which can be also analyzed with the presented method. The newly introduced Hill-Floquet method is based on the Hill’s infinite determinant method and enables the transformation of a system with periodic coefficients to an autonomous system with constant coefficients. This makes the usage of a variety of existing methods for autonomous systems available for the analysis of periodic systems, which implies that the typical calculation of the monodromy matrix for the time evolution of the solution over the principle period is no longer required. In this thesis, the Chebyshev collocation method is used for the analysis of the autonomous systems. Specifically, in this case the periodic part of the solution is expanded in a Fourier series and the exponential behavior of the solution is approximated by the discrete values of the Fourier coefficients at the Chebyshev nodes, whereas in classical spectral or pseudo-spectral methods for the analysis of linear periodic DDEs the complete solution is expanded in terms of basis functions. In the last part of this thesis, new results for three applications with time delay effects are presented, which were analyzed with the presented methods. On the one hand, the occurrence of diffusion-driven instabilities in reaction-diffusion systems with delay is investigated. It is shown that wave instabilities are possible already for single-species reaction diffusion systems with distributed or time-varying delay. On the other hand, the stability of metal cutting vibrations at machine tools is analyzed. In particular, parallel orthogonal turning processes with multiple discrete delays and turning processes with a time-varying delay due to a spindle speed variation are studied. Finally, the stability of the synchronized solution in networks with heterogeneous coupling delays is studied. In particular, the eigenmode expansion for synchronized periodic orbits is derived, which includes an extension of the classical master stability function to networks with heterogeneous coupling delays. Numerical results are shown for a network of Hodgkin-Huxley neurons with two delays in the coupling.:1. Introduction 2. System definition and equivalent systems 3. Analysis of nonlinear time delay systems 4. Analytical solution of linear time delay systems 5. Frequency domain approach 6. Hill-Floquet method 7. Applications 8. Concluding remarks A Appendix / In dieser Dissertation wird ein neues Verfahren zur Analyse von Systemen mit Totzeiten im Frequenzraum vorgestellt. Nach Linearisierung einer nichtlinearen retardierten Differentialgleichung (DDE) mit konstanter verteilter Totzeit um eine konstante oder periodische Referenzlösung kann die sogenannte Hill-Floquet Methode für die Analyse der resultierende linearen DDE angewendet werden. Darüber hinaus werden Systeme mit schnell oder langsam variierender Totzeit, Systeme mit einer variablen Totzeit, resultierend aus einem Transport mit variabler Geschwindigkeit, und entsprechende räumlich ausgedehnte Systeme vorgestellt, welche ebenfalls mit der vorgestellten Methode analysiert werden können. Die neu eingeführte Hill-Floquet Methode basiert auf der Hillschen unendlichen Determinante und ermöglicht die Transformation eines Systems mit periodischen Koeffizienten auf ein autonomes System mit konstanten Koeffizienten. Dadurch können zur Analyse periodischer Systeme auch eine Vielzahl existierender Methoden für autonome Systeme genutzt werden und die Berechnung der Monodromie-Matrix für die Lösung des Systems über eine Periode entfällt. In dieser Arbeit wird zur Analyse des autonomen Systems die Tschebyscheff-Kollokationsmethode verwendet. Im Speziellen wird bei diesem Verfahren der periodische Teil der Lösung in einer Fourierreihe entwickelt und das exponentielle Verhalten durch die Werte der Fourierkoeffizienten an den Tschebyscheff Knoten approximiert, wohingegen bei klassischen spektralen Verfahren die komplette Lösung in bestimmten Basisfunktionen entwickelt wird. Im Anwendungsteil der Arbeit werden neue Ergebnisse für drei Beispielsysteme präsentiert, welche mit den vorgestellten Methoden analysiert wurden. Es wird gezeigt, dass Welleninstabilitäten schon bei Einkomponenten-Reaktionsdiffusionsgleichungen mit verteilter oder variabler Totzeit auftreten können. In einem zweiten Beispiel werden Schwingungen an Werkzeugmaschinen betrachtet, wobei speziell simultane Drehbearbeitungsprozesse und Prozesse mit Drehzahlvariationen genauer untersucht werden. Am Ende wird die Synchronisation in Netzwerken mit heterogenen Totzeiten in den Kopplungstermen untersucht, wobei die Zerlegung in Netzwerk-Eigenmoden für synchrone periodische Orbits hergeleitet wird und konkrete numerische Ergebnisse für ein Netzwerk aus Hodgkin-Huxley Neuronen gezeigt werden.:1. Introduction 2. System definition and equivalent systems 3. Analysis of nonlinear time delay systems 4. Analytical solution of linear time delay systems 5. Frequency domain approach 6. Hill-Floquet method 7. Applications 8. Concluding remarks A Appendix

Page generated in 0.0603 seconds