Spelling suggestions: "subject:"floral meristem"" "subject:"floral meristema""
1 |
Ontogênese do complexo de gemas em Passiflora L. (Passifloraceae) e expressão de PasAP1, ortólogo de APETALA1 / Organogenesis of the bud complex in Passiflora L.(Passifloraceae) and expression of PasAP1, APETALA1 orthologLopes Filho, José Hernandes 20 March 2015 (has links)
A axila foliar em Passiflora L. (Passifloraceae) apresenta uma estrutura complexa: de um mesmo ponto parecem surgir flores e gavinhas, além de uma gema vegetativa também estar presente. A origem da gavinha foi interpretada de diferentes maneiras ao longo da história, sendo considerada desde modificações de um ramo até uma flor. Além disso, a ontogenia dessas estruturas tem início em um único meristema axilar, que geralmente é descrito como capaz de se dividir em dois ou mais meristemas (chamado de \"complexo de gemas\"), cada qual dando origem a uma estrutura diferente (gavinhas e flores). Estudos de expressão gênica demonstram a presença do ortólogo do gene LEAFY de Arabidopsis, em meristemas axilares, florais e de gavinhas, em duas espécies de Passiflora. Esse gene é tipicamente relacionado à transição de fase vegetativa para reprodutiva em diversas angiospermas. Assim, o presente estudo objetivou descrever em detalhes a ontogenia das diferentes estruturas originadas no meristema axilar de diferentes espécies, focando em diferentes fases de vida da planta, bem como averiguar a expressão de ortólogos de APETALA1 (AP1), um gene tipicamente relacionado à identidade de meristemas florais e na determinação de sépalas e pétalas. Como resultado, propomos uma nova interpretação para a ontogenia do complexo de gemas, baseada na produção de brácteas e seus meristemas associados. Demonstramos também que o ortólogo de AP1 se expressa de maneira mais ampla do que aquela encontrada no modelo Arabidopsis, possivelmente desempenhando diversas funções relacionadas à manutenção da indeterminação celular. / The leaf axil in Passiflora L. (Passifloraceae) bears a complex structure: a tendril and one or more flowers seem to arise from the same growing point. In addition, vegetative bud is also present. There are many different interpretations for the origin of the tendril in this group, ranging from modifications of flowers to side shoots. Also, the ontogeny of these structures is often understood as a single meristem which subdivides into a bud complex, comprising the tendril and flower meristems. Recently, the expression of the LEAFY ortholog was demonstrated in the axillary, tendril and floral meristems of two Passiflora species. In Arabidopsis and many angiosperms, this gene is responsible for the shift between vegetative and reproductive phase. Therefore, the present work aimed to describe, in detail, the ontogeny of the bud complex in Passiflora species belonging to different subgenera, including different life stages. The expression of the ortholog of APETALA1, a gene typically related to floral meristem identity and sepal/petal specification was also assessed. As results, we propose a different interpretation for the ontogeny of the bud complex, based on the production of bracts and their associated meristems by the original axillary meristem, which then turns into the tendril meristem. We also demonstrate that expression of AP1 is much broader than that of the Arabidopsis model, and possibly have many other functions related to cell indeterminacy.
|
2 |
Caractérisation de l’interaction des protéines IMA/MIF2 et CSN5 au niveau moléculaire et physiologiqueLeblond-Castaing, Julie 19 December 2011 (has links)
Les plantes ont la capacité à former de nouveaux organes grâce à une croissance continue assurée par une réserve de cellules souches au sein de structures spécifiques, les méristèmes. Les méristèmes floraux diffèrent des méristèmes végétatifs par leur caractère déterminé aboutissant à la production des fleurs. Le gène IMA (INHIBITOR OF MERISTEM ACTIVITY) code une protéine contenant un motif «doigt à zinc» (MIF) régulant les processus développementaux de la fleur et des ovules chez la tomate. En effet, IMA inhibe la prolifération cellulaire au cours de la terminaison florale en agissant sur l’expression du gène WUSCHEL, responsable du maintien du pool de cellules souches et contrôle le nombre de carpelles (Sicard et al., 2008). De plus, les protéines IMA et son orthologue chez Arabidopsis, MIF2, modulent la réponse à certaines phytohormones. De manière identique à la protéine MIF1 (Hu and Ma, 2006), IMA/MIF2 régule négativement la réponse aux brassinostéroïdes, à l’auxine, aux cytokinines et aux gibbérellines mais positivement la réponse à l’acide abscissique suggérant une fonction commune des protéines MIF dans les voies de réponse aux phytohormones. Un criblage d’une banque d’ADNc par la technique de double hybride a permis de révéler l’interaction entre les protéines IMA/MIF2 et une sous-unité du complexe signalosome, CSN5. De façon intéressante, les plantes mutantes csn5 d’Arabidopsis montrent de nombreuses altérations phénotypiques telles qu’un aspect buissonnant résultant de la perte de la dominance apicale, et une altération de la réponse à l’obscurité et à l’auxine. Ces phénotypes sont fortement ressemblants aux phénotypes des plantes MIF1OE d’Arabidopsis (Hu and Ma, 2006) et des plantes IMAOE de tomate (Sicard et al., 2008). Les résultats obtenus au cours de ce projet montrent que la protéine IMA inhibe la fonction du complexe signalosome grâce à son interaction avec la protéine CSN5. / Plants have the ability to form new organs as a result of indeterminate growth ensured by specific regions of pluripotent cells, called meristems. Flowers are produced by the activity of floral meristems which differ from vegetative meristems in their determinate fate. The INHIBITOR OF MERISTEM ACTIVITY (IMA) gene encoding a Mini Zinc Finger (MIF) protein from tomato (Solanum lycopersicum) regulates the processes of flower and ovule development. IMA inhibits cell proliferation during floral termination, controls the number of carpels during floral development and acts as a repressor of the meristem organizing centre gene WUSCHEL (Sicard et al., 2008). We demonstrated that IMA and its Arabidopsis ortholog MIF2 is also involved in a multiple hormonal signalling pathway, as a putative conserved feature for plant MIF proteins (Hu and Ma, 2006). Alike Arabidopsis MIF1, IMA/MIF2 regulates negatively BR, auxin, cytokinin and gibberellin signalling and positively ABA signaling. Using yeast two-hybrid screening experiments, we identified a strong protein-protein interaction between IMA and the signalosome subunit 5 (CSN5). Interestingly the csn5 mutant in Arabidopsis displays pleiotropic developmental defects such as a bushy phenotype originating from the loss of apical dominance and the alteration in sensitivity to darkness and auxin signals. These phenotypes are strikingly similar to what was described for Arabidopsis MIF1 (Hu and Ma, 2006) and tomato IMA overexpressors plants (Sicard et al., 2008), respectively. Taken together our data strongly suggest that IMA may act as an inhibitor of CSN function through its physical interaction with SlCSN5. The observed converse effects of IMA/MIF2 overexpression or deregulation on plant development and the abundance of developmental marker genes further support the notion of a CSN inhibitory control, since the COP9 signalosome through the specific deneddylation activity of the CSN5 subunit regulates plant hormone signalling.
|
3 |
Ontogênese do complexo de gemas em Passiflora L. (Passifloraceae) e expressão de PasAP1, ortólogo de APETALA1 / Organogenesis of the bud complex in Passiflora L.(Passifloraceae) and expression of PasAP1, APETALA1 orthologJosé Hernandes Lopes Filho 20 March 2015 (has links)
A axila foliar em Passiflora L. (Passifloraceae) apresenta uma estrutura complexa: de um mesmo ponto parecem surgir flores e gavinhas, além de uma gema vegetativa também estar presente. A origem da gavinha foi interpretada de diferentes maneiras ao longo da história, sendo considerada desde modificações de um ramo até uma flor. Além disso, a ontogenia dessas estruturas tem início em um único meristema axilar, que geralmente é descrito como capaz de se dividir em dois ou mais meristemas (chamado de \"complexo de gemas\"), cada qual dando origem a uma estrutura diferente (gavinhas e flores). Estudos de expressão gênica demonstram a presença do ortólogo do gene LEAFY de Arabidopsis, em meristemas axilares, florais e de gavinhas, em duas espécies de Passiflora. Esse gene é tipicamente relacionado à transição de fase vegetativa para reprodutiva em diversas angiospermas. Assim, o presente estudo objetivou descrever em detalhes a ontogenia das diferentes estruturas originadas no meristema axilar de diferentes espécies, focando em diferentes fases de vida da planta, bem como averiguar a expressão de ortólogos de APETALA1 (AP1), um gene tipicamente relacionado à identidade de meristemas florais e na determinação de sépalas e pétalas. Como resultado, propomos uma nova interpretação para a ontogenia do complexo de gemas, baseada na produção de brácteas e seus meristemas associados. Demonstramos também que o ortólogo de AP1 se expressa de maneira mais ampla do que aquela encontrada no modelo Arabidopsis, possivelmente desempenhando diversas funções relacionadas à manutenção da indeterminação celular. / The leaf axil in Passiflora L. (Passifloraceae) bears a complex structure: a tendril and one or more flowers seem to arise from the same growing point. In addition, vegetative bud is also present. There are many different interpretations for the origin of the tendril in this group, ranging from modifications of flowers to side shoots. Also, the ontogeny of these structures is often understood as a single meristem which subdivides into a bud complex, comprising the tendril and flower meristems. Recently, the expression of the LEAFY ortholog was demonstrated in the axillary, tendril and floral meristems of two Passiflora species. In Arabidopsis and many angiosperms, this gene is responsible for the shift between vegetative and reproductive phase. Therefore, the present work aimed to describe, in detail, the ontogeny of the bud complex in Passiflora species belonging to different subgenera, including different life stages. The expression of the ortholog of APETALA1, a gene typically related to floral meristem identity and sepal/petal specification was also assessed. As results, we propose a different interpretation for the ontogeny of the bud complex, based on the production of bracts and their associated meristems by the original axillary meristem, which then turns into the tendril meristem. We also demonstrate that expression of AP1 is much broader than that of the Arabidopsis model, and possibly have many other functions related to cell indeterminacy.
|
4 |
The role of LC and FAS in regulating floral meristem and fruit locule number in tomatoChu, Yi-Hsuan January 2017 (has links)
No description available.
|
5 |
A expressão de SCI1 e sua regulação transcricional no meristema floral de Nicotiana tabacum / The expression of SCI1 and its transcriptional regulation in the floral meristem of Nicotiana tabacumCruz, Joelma de Oliveira 21 June 2018 (has links)
A flor se caracteriza como um ramo altamente modificado, especializado na reprodução das angiospermas. Por ser responsável por um processo tão crucial no ciclo de vida das plantas, o desenvolvimento das flores é estritamente regulado por vias genéticas e sinais ambientais que controlam a transição da fase vegetativa para fase reprodutiva. Esse controle culmina na determinação no meristema floral, o qual se diferenciará nos quatro verticilos florais: sépalas, pétalas, estames e pistilo. Dentre os quatro verticilos, os estames e o pistilo são os órgãos responsáveis pela reprodução, logo é de suma importância compreender mecanismos moleculares responsáveis pelo correto desenvolvimento desses órgãos. Com o intuito de melhor compreender o desenvolvimento do pistilo, nosso grupo de pesquisa fez a caracterização inicial de um gene preferencialmente expresso no pistilo de Nicotiana tabacum, que controla a proliferação celular nesse órgão e foi denominado SCI1 (Stigma/style Cell-cycle Inhibitor 1). No entanto, seu mecanismo de ação ainda não foi elucidado. Avanços nas investigações tem revelado uma extensa rede de proteínas com as quais SCI1 interage, o que permitiu assumir que SCI1 está envolvido em vias de processamento de RNA e no ciclo celular. Seu envolvimento em processos celulares básicos, levantou a hipótese de uma possível expressão no início do desenvolvimento floral. Portanto, este trabalho teve por objetivos determinar onde e quando o gene SCI1 inicia sua expressão em flores de Nicotiana tabacum; relacionar a expressão de SCI1 com o desenvolvimento do pistilo; e analisar a regulação transcricional de SCI1. Através da hibridização in situ foi possível determinar que SCI1 inicia sua expressão no meristema floral e segue se expressando intensamente nos primórdios iniciais dos verticilos florais. A expressão de SCI1 no meristema floral e primórdios dos verticilos indica que este gene pode estar envolvido no desenvolvimento de todos os verticilos florais. A medida que os verticilos se especificam, a expressão de SCI1 é reduzida, exceto no pistilo, órgão em que se localizam as últimas células meristemáticas a se diferenciarem. O mRNA de SCI1 foi detectado tanto nos carpelos não fusionados, quanto já fusionados. A hibridização in situ também revelou a coexpressão de SCI1 com o gene NAG1 no meristema floral, nos verticilos dos estames e carpelos. NAG1 codifica um fator de transcrição responsável pela especificação do terceiro e quarto verticilos florais e SCI1 foi descrito como um gene que controla o desenvolvimento de estigmaxv e estilete, estruturas que fazem parte do quarto verticilo, logo essa co-expressão revela uma possível interação desse fator de transcrição com o promotor de SCI1. Essa interação foi predita in silico e confirmada em ensaio de mono híbrido (Yeast One Hybrid) com uma porção do promotor de SCI1, denominada frag1, que compreende 443pb acima do códon de iniciação (ATG). Análises in silico também encontraram um putativo sítio para a interação do fator de transcrição WUSCHEL nesse mesmo fragmento, no entanto os resultados obtidos nos ensaios de mono híbrido para esta interação foram inconclusivos. Plantas transgênicas expressando a proteína SCI1 em fusão traducional a GFP, sob controle do promotor endógeno de SCI1, foram capazes de reproduzir a expressão endógena desse gene e possibilitaram determinar a localização da proteína. Como o mRNA, a proteína SCI1 é encontrada a partir do meristema floral e em todos os verticilos florais. A medida que a flor se desenvolvia, a proteína foi reduzindo sua quantidade de maneira centrípeta nos verticilos, no entanto essa redução não foi observada no pistilo até o estádio 2, estádio em que foi possível a observação (devido ao tamanho da flor). Nessas plantas também foi possível detectar a proteína SCI1 nos tecidos especializados do estilete e estigma, tecido transmissor do estilete e zona secretória do estigma, respectivamente, assim como nas células do parênquima. Essas plantas também possibilitaram observar a proteína nos óvulos e confirmar sua localização em núcleo e nucléolo. Esse conjunto de dados confirmam a hipótese da expressão de SCI1 no meristema floral. Além disso, os resultados demonstram que a expressão de SCI1 é regulada diretamente pelo fator de transcrição NAG1 / The flower is characterized as a highly modified branch, specialized in the reproduction of angiosperms. Since it is responsible for such a crucial process in the life cycle of plants, flower development is strictly regulated by genetic pathways and environmental signals that control the transition from the vegetative phase to the reproductive phase. This control culminates in the floral meristem determination, which will differentiate in the four flower whorls: sepals, petals, stamens and pistil. Among the four whorls, stamens and pistil are the organs responsible for reproduction, so it is extremely important to understand the molecular mechanisms responsible for the correct development of these organs. In order to better understand the development of pistil, our research group made the initial characterization of a gene preferentially expressed in the pistil of Nicotiana tabacum, which controls cell proliferation in this organ and was denominated SCI1 (Stigma/style Cell-cycle Inhibitor 1). However, its mechanism of action has not yet been elucidated. Advances in the investigations have revealed an extensive network of proteins with which SCI1 interacts, which has allowed to assume that SCI1 is involved in RNA processing pathways and in the cell cycle. Its involvement in basic cellular processes, raised the hypothesis of a possible expression at the beginning of floral development. Therefore, this work had as objectives to determine where and when the SCI1 gene starts its expression in flowers of Nicotiana tabacum; to correlate SCI1 expression to pistil development; and to analyze the transcriptional regulation of SCI1. Through in situ hybridization, it was possible to determine that SCI1 starts its expression in the floral meristem and continues to express intensely in the early primordia of floral whorls. The expression of SCI1 in floral meristem and whorl primordia indicates that this gene may be involved in the development of all floral whorls. As the whorls are specified, the expression of SCI1 is reduced, except in the pistil, organ in which the last meristematic cells are located. SCI1 mRNA was detected in both unfused and fused carpels. In situ hybridization also revealed the co-expression of SCI1 with the NAG1 gene in the floral meristem, in the whorls of stamens and carpels. NAG1 encodes a transcription factor responsible for the specification of the third and fourth floral whorls and SCI1 was described as a gene that controls the development of stigma and style, structures that are part of the fourth whorl, so this co-expression reveals a possible interaction of this transcription factor with the SCI1 promoter. This interaction was predicted in silico and confirmed in a Yeast One Hybrid assay with a portion of the SCI1 promoter, called frag1, comprising 443bp upstream the initiation codon (ATG). In silico analyzes also found a putative site for the interaction of the WUSCHEL transcription factor in this same fragment, however the results obtained in Yeast One Hybrid assays for this interaction were inconclusive. Transgenic plants expressing the SCI1 protein in translational fusion to GFP, under the control of the endogenous SCI1 promoter, were able to reproduce the endogenous expression of this gene and enabled to determine the location of the protein. Like the mRNA, the SCI1 protein is found since the floral meristem and on all floral whorls. As the flower developed, the protein was reducing its amount in a centripetal way in the whorls, however this reduction was not observed in the pistil until the stage 2, the last stage in which the observation was possible (due to the size of the flower). In these plants it was also possible to detect the SCI1 protein in the specialized tissues of style and stigma, stylar transmitting tissue and stigmatic secretory zone, respectively, as well as in the parenchyma cells. These plants also allowed the observation of the protein in ovules and to confirm its localization in nucleus and nucleolus. This data set confirms the hypothesis of SCI1 expression in floral meristem. In addition, the results demonstrate that SCI1 expression is directly regulated by the transcription factor NAG1
|
6 |
Delineating the Role of OsMADS1 in Auxin Distribution, Floret Identity and Floret Meristem DeterminacyLhaineikim, Grace January 2016 (has links) (PDF)
Rice have highly derived florets borne on a short branch called ‘spikelet’ comprised of a pair of rudimentary glumes and sterile lemma (empty glumes) that subtends a single fertile floret. The floral organs consist of a pair of lodicules, six stamens and a central carpel that are enclosed by a pair of bract-like organs, called lemma and palea. A progressive reprogramming of meristem identity during the floral development of flowers, on branches on the inflorescence, is correlated with changes in transcriptional status of regulatory genes that execute cascades of distinct developmental events. On the other hand phytohormones such as auxin and cytokinin that are critical in predetermining the sites of new organ primordia emergence and in maintaining the size or populations of meristems. Molecular genetic analyses of mutants have expanded the repository of genes regulating floral organ specification and identity, yet the finer mechanistic details on process downstream to these regulatory genes and co-ordination with phytohormone signalling pathways needs further investigation.
One aim of the study presented in this thesis is to develop a tool that would display of spatial description of dynamic auxin or cytokinin accumulation in developing rice inflorescence and floral meristems and to evaluate auxin distribution defects of OsMADS1-RNAi florets using this tool. Additionally, we aim to understand the regulatory effects on OsMADS1 on candidate floral organ and meristem fate determining genes during two temporal phases of flower development to decipher other regulatory cascades controlled by OsMADS1.
Spatial distribution profile of phytohormones in young and developing meristems of rice
Cytokinin promotes meristem activity (Su et al., 2011) while auxin accumulation, directed by auxin efflux transport PIN proteins predicts sites of new organ initiation (Reinhardt et al., 2003; van Mourik et al., 2012).
Previous studies in the lab deciphered that OsMADS1 exerts positive regulatory effects on genes in auxin pathways and repressive effects on cytokinin signaling and biosynthetic genes (Khanday et al., 2013). Thus, the need for a reliable system to understand auxin and cytokinin activity in live inflorescence and floral meristems of rice motivated us to raise promoter: reporter tools to map the spatial and temporal phytohormone distribution. Confocal live imaging conditions in primary roots of IR4DR-GFP and DR5-CyPet lines was performed and responsiveness of the DR5 elements to auxin was authenticated. Auxin maxima were distinctly seen in the epidermal and sub-epidermal cells of inflorescence branch primordia anlagen and apices of newly emerged branch primordia. As floral organs were being initiated, on the floret meristem, we discerned the sequential appearance of auxin accumulation at sites of organ primordia while apices of early floral meristems (FM) showed low auxin content. We clearly detect canalization of auxin streams marking regions of vascular inception. Using this live imaging system we probed auxin patterns and levels in malformed and indeterminate OsMADS1-RNAi florets and we observed a significant reduction in the levels of auxin. Two oppositely positioned peaks of auxin were noted in the persistent FM of OsMADS1-RNAi florets, a pattern similar to auxin dynamics at sites of rudimentary glume primordia on the wild-type (WT) spikelet meristem. These studies were followed up with immunohistochemistry (IHC) on fixed tissues for “PIN” transport proteins that suggest PIN convergence towards organ initiation sites, regions where auxin accumulation was clearly visualized by the IR4DR5-GFP and DR5-CyPet reporters.
IHC experiments that detected GFP, in fixed tissues of TCSn-mGFP ER (WT) and TCSn-mGFP ER;OsMADS1-RNAi (OsMADS1-RNAi) inflorescence and florets showed an ectopic increase in the domain of cells with cytokinin response in OsMADS1-RNAi florets, compared to that of WT. Intriguingly, cytokinin responsive cells persisted in the central FM of OsMADS1-RNAi florets that might partially account for some of the FM indeterminacy defects seen in these florets. A correlative observation of these different imaging data hint at some exclusive patterns of the
IR4DR5/DR5 and TCSn reporters that in turn lead us to speculate that a cross talk between auxin and cytokinin distribution may contribute to the precise phyllotaxy of lateral organs in rice inflorescence.
Studies on novel targets of OsMADS1 in floral organ identity and meristem determinacy
Loss of OsMADS1 function results in rice florets with miss specified floral organs and an indeterminate carpel produces new abnormal florets. Despite having several mutants in OsMADS1, mechanisms of how OsMADS1 regulates meristem maintenance and termination is not well understood. Global expression profile in OsMADS1-RNAi vs. WT tissues encompassing a wide range of developing florets (0.2 to 2cm panicles), gave an overview of OsMADS1 functions in many aspects of floret development. Here, a gene-targeted knockout of OsMADS1 named - osmads1ko (generated in a collaborative study) was characterized and found to display extreme defects in floral organs and an indeterminate FM. Strikingly, in addition to loss of determinacy, FM reverts to a prior developmental fate of inflorescence on whose new rachis are leaf-like malformed florets. We suggest these phenotypes reflect the null phenotype of OsMADS1 and its role in meristem fate maintenance. We tested gene expression levels for some proven targets of OsMADS1 (Khanday et al., 2013) and utilized panicles in two developmental phases- young early FMs (panicles of 0.2 to 0.5 cm) and older florets with organ differentiation (panicles of 0.5 to 1cm). We observed temporally different effects on the regulation of OsMADS34 that together with histology of young osmads1ko inflorescences suggest that the mutant is impeded for spikelet to floral meristem transition. In addition, OsMADS1 had a positive regulatory effect on genes implicated for lemma and palea organ identity such as OsIDS1, OsDH1, OsYABBY1, OsMADS15, OsMADS32, OsDP1 and OsSPL16 in both young and old panicles while OsIG1 was negatively regulated in both phases of development. MADS-box genes important for carpel and ovule development - OsMADS13 and OsMADS58 were had significantly reduced expression in florets undergoing organ differentiation. OsMADS1 positively regulated several other non MADS-box developmental genes - OsSPT, OsHEC2 and OsULT1, whose Arabidopsis homologs control carpel development and FM determinacy. These genes are de-regulated in later stages of osmads1ko floret development and are unaffected in younger panicles. Finally, OsMADS1 continually activated meristem maintenance genes - OsBAM2-like and OsMADS6 while the activation of OSH1 in early floral meristems was later altered to a repressive effect in developing florets. Perhaps such dynamic temporal effects on meristem genes are instrumental in the timely termination of the floral meristem after floral organ differentiation. More importantly, we show that regulation of many of these genes is directly affected by OsMADS1, through our studies on expression levels before and after chemical induction of OsMADS1-GR protein in amiRNAOsMADS1 florets. Further, some key downstream targets were re-affirmed by studying expression status in transgenic lines, with the OsMADS1-EAR repressive protein variant. These results provide new insights into the developmentally phased roles of OsMADS1 on floral meristem regulators and determinants of organ identity to form a determinate rice floret.
Gene networks regulated by OsMADS1 during early flower development
To identify global targets in early floret meristems, we determined the differential RNA transcriptome in osmads1ko tissues as compared to wild-type tissues. These data revealed regulators of inflorescence architecture, floral organ identity including MADS-box floral homeotic factors, factors for meristem maintenance, auxin response, transport and biosynthesis as some of the important functional classes amongst the 2725 differentially expressed genes (DEGs). Integrating DEGs with OsMADS1 ChIP-seq data (prior studies from our lab) we deciphered direct vs. indirect and positive vs. negatively regulated targets of OsMADS1. These datasets reveal an enrichment for functional categories such as metabolic processes, signaling, RNA transcription and processing, hormone metabolism and protein modification. Using Bio-Tapestry plot as a tool we present a visualization of a floral stage-specific regulatory network for genes with likely functional roles in meristem specification and in organ development. Further, to examine if indirect targets regulated by OsMADS1 could be mediated through transcription factors (that are themselves direct targets), we constructed a small network with the transcription factors OSH1, OSH15 and OsYABBY1 as key nodal genes and we predicted their downstream effects. Taken together, these analyses provide examples of the complex networks that OsMADS1 controls during the process of rice floret development.
In summary, we surmise that defect in phytohormone distribution in OsMADS1 knockdown florets results in irregular patterns of lateral organ primordia emergence. In addition, the derangements in the developmentally stage specific expression of floral meristems identity and organ identity genes culminates in miss-specified and irregularly patterned abnormal organs in Osmads1 florets. Thus, our study highlights the versatility of OsMADS1 in regulating components of hormone signaling and response, and its effects on various floral development regulators results in the formation of a single determinate floret on the spikelet.
References:
Khanday I, Yadav S.R, and Vijayraghavan U. (2013). Plant Physiol 161, 1970–1983.
van Mourik S , Kaufmann K, van Dijk AD, Angenent G.C, Merks R.M.H, Molenaar J. (2012). PLOS One 1, e28762
Reinhardt D, Pesce E, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Friml J and Kuhlemeier C. (2003). Nature 426, 255-260
Su Y, Liu Y and Zhang X. (2011) Mol Plant 4, 616–625
|
7 |
Study of the Fruit Inhibitory Mechanism on Citrus flowering. Nutritional, Hormonal and Genetic FactorsMarzal Blay, Andrés 22 February 2025 (has links)
[ES] En los cítricos, la baja temperatura promueve la inducción floral en otoño-invierno aumentando la expresión del gen promotor CiFT3 (homólogo en los cítricos del gen FLOWERING LOCUS T). La presencia de un gran número de frutos en el árbol durante ese momento inhibe la expresión de CiFT3 y la floración, pero se desconoce la señal inhibitoria que genera el fruto. Las hipótesis mayormente aceptadas proponen que la señal puede ser hormonal o nutricional. En el primer caso, el efecto inhibidor se atribuye a las hormonas que el fruto produce y exporta durante su desarrollo. En el segundo caso, el efecto inhibidor se atribuye a la alta demanda y consumo de carbohidratos por los frutos en desarrollo. Ambas hipótesis son complementarias y no excluyentes entre sí. Además, se ha demostrado que el fruto promueve la activación epigenética del represor de la floración CcMADS19 (homólogo en los cítricos del gen FLOWERING LOCUS C), que inhibe la expresión del gen CiFT3. Con el objetivo de determinar qué señal produce el fruto para inhibir la floración, en esta Tesis se propone la siguiente hipótesis: El fruto inhibe la floración a través de la síntesis y exportación de auxinas que activa la síntesis de giberelinas y, a su vez, la expresión de CcMADS19.
Mediante experimentos con tratamientos exógenos de auxinas, giberelinas, y sus antagonistas, aclareo de frutos, y la interrupción del transporte por el floema entre el fruto y las yemas, los resultados indican que ni las giberelinas ni las auxinas se relacionan de forma consistente con la activación de la expresión de CcMADS19 en las hojas. En las yemas, las giberelinas se relacionan con la activación del gen inhibidor CENTRORRADIALIS (CEN), cuando hay fruto por aumento de la síntesis de GA4, y cuando no hay fruto por su aplicación exógena. La presencia del fruto aumenta la concentración de auxinas en el tallo y la yema en el momento de la inducción, y reprime su síntesis y trasporte. Pero esto no impide que, en la yema, el gen CcMADS19 esté epigenéticamente silenciado y que el silenciamiento se transmita a los nuevos brotes vegetativos. Estos brotes florecen en el siguiente ciclo, y, en sus yemas, la diferenciación floral se relaciona con un aumento de la síntesis y trasporte de auxinas y una reducción de la síntesis de giberelinas. / [CA] Als cítrics, les baixes temperatures promouen la inducció floral a la tardor i l'hivern augmentant l'expressió del gen promotor CiFT3 (homòleg en els cítrics del gen FLOWERING LOCUS T). La presència d'un gran nombre de fruita a l'arbre en aquest moment inhibeix l'expressió de CiFT3 i la floració, però es desconeix la senyal inhibidora que genera la fruita. Les hipòtesis majoritàriament acceptades proposen que la senyal pot ser hormonal o nutricional. En el primer cas, l'efecte inhibidor s'atribueix a les hormones que la fruita produeix i exporta durant el seu desenvolupament. En el segon cas, l'efecte inhibidor s'atribueix a la alta demanda i consum de carbohidrats per part de la fruita en desenvolupament. Ambdues hipòtesis són complementàries i no es descarten mútuament. A més, s'ha demostrat que la fruita promou l'activació epigenètica del repressor de la floració CcMADS19 (homòleg en els cítrics del gen FLOWERING LOCUS C), que inhibeix l'expressió del gen CiFT3. Amb l'objectiu de determinar quina senyal produeix la fruita per inhibir la floració, en aquesta Tesi es proposa la següent hipòtesi: La fruita inhibeix la floració mitjançant la síntesi i exportació d'auxines que activa la síntesi de giberelines i, al seu torn, l'expressió de CcMADS19.
Mitjançant experiments amb tractaments exògens d'auxines, giberelines i els seus antagonistes, aclarida de fruita i la interrupció del transport pel floema entre la fruita i les brots, els resultats indiquen que ni les giberelines ni les auxines es relacionen de manera consistent amb l'activació de l'expressió de CcMADS19 a les fulles. A les gemmes, les giberelines es relacionen amb l'activació del gen inhibidor CENTRORRADIALIS (CEN) quan hi ha fruita per l'augment de la síntesi de GA4 i quan no hi ha fruita per la seua aplicació exògena. La presència de la fruita augmenta la concentració d'auxines a la tija i la gemma en el moment de la inducció i reprimeix la seua síntesi i transport. Però això no impedeix que, a la gemma, el gen CcMADS19 estigui epigenèticament silenciat i que el silenciament es transmeti als nous brots vegetatius. Aquests brots floreixen al següent cicle i, a les seues gemmes, la diferenciació floral es relaciona amb un augment de la síntesi i transport d'auxines i una reducció de la síntesi de giberelines. / [EN] In citrus, low temperature promotes flower induction in autumn-winter by increasing the expression of the CiFT3 promoter gene (citrus homologue of the FLOWERING LOCUS T gene). The presence of large numbers of fruits on the tree at this time inhibits CiFT3 expression and flowering, but the inhibitory signal produced by the fruits is unknown. The most widely accepted hypotheses are that the signal is hormonal or nutritional. In the first case, the inhibitory effect is attributed to hormones produced and exported by the fruit during development. In the second case, the inhibitory effect is attributed to the high demand and consumption of carbohydrates by the developing fruit. The two hypotheses are complementary and not mutually exclusive. In addition, it has been shown that the fruit promotes the epigenetic activation of the flowering repressor CcMADS19 (citrus homolog of the FLOWERING LOCUS C gene), which inhibits the expression of the CiFT3 gene. To determine which signal is produced by the fruit to inhibit flowering, the following hypothesis is proposed in this thesis: The fruit inhibits flowering through the synthesis and export of auxins, which activates the synthesis of gibberellins and, in turn, the expression of CcMADS19.
Experiments with exogenous treatments of auxins, gibberellins and their antagonists, fruit thinning, and disruption of phloem transport between fruit and buds indicate that neither gibberellins nor auxins are consistently associated with the activation of CcMADS19 expression in leaves. In buds, gibberellins are associated with the activation of the flowering inhibitor CENTRORADIALIS (CEN), in the presence of fruit by increasing GA4 synthesis, and in the absence of fruit by its exogenous application. The presence of fruit increases the concentration of auxin in the stem and bud at the time of induction and suppresses its synthesis and transport. However, this does not prevent the epigenetic silencing of the CcMADS19 gene in the bud, which is transmitted to the leaves of the new vegetative shoots. These shoots flower in the following cycle, where floral differentiation is associated with an increase in auxin synthesis and transport and a decrease in gibberellin synthesis in the bud. / Marzal Blay, A. (2024). Study of the Fruit Inhibitory Mechanism on Citrus flowering. Nutritional, Hormonal and Genetic Factors [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/203155
|
8 |
Functional Characterization of RFL as a Regulator of Rice Plant ArchitectureDeshpande, Gauravi M January 2014 (has links) (PDF)
Poaceae (or Gramineae) belong to the grass family and is one of the largest families among flowering plants on land. They include some of the most important cereal crops such as rice (Oryza sativa), barley (Hordeum vulgare), wheat (Triticum aestivum), maize (Zea mays), and sorghum (Sorghum bicolor). The characteristic bushy appearance of grass plants, including cereal crops, is formed by the activities of axillary meristems (AMs) generated in the leaf axil. These give rise to tillers from the basal nodes which recapitulate secondary growth axis and AMs are formed during vegetative development. On transition to flowering the apical meristem transforming to an inflorescence meristem (IM) which produces branches from axillary meristem. These IM gives rise to branches that ultimately bear florets. Vegetative branching/tillering determines plant biomass and influences the number of inflorescences per plant. While inflorescence branching determines the number of florets and hence seeds. Thus the overall activity of axillary meristems plays a key role in determining plant architecture during both vegetative and reproductive stages. In Arabidopsis, research on the plant specific transcription factor LEAFY (LFY) has pioneered our understanding of its regulatory functions during transition from vegetative to reproductive development and its role in specifying a floral meristem (FM) identity to the newly arising lateral meristems. In the FM LFY activates other FM genes and genes for floral organ patterning transcription factors. LFY is strongly expressed throughout the young floral meristems from the earliest stages of specification but is completely absent from the IM (Weigel et al., 1992). LFY expression can also be detected at low levels in the newly emerging leaf primordia during the vegetative phase, and these levels gradually increase until the floral transition (Blazquez et al., 1997; Hempel et al., 1997). In rice, the LFY ortholog-RFL/APO2 is expressed predominantly in very young branching panicles/ inflorescence meristems (Kyozuka et al., 1998; Prasad et al., 2003) while in the vegetative phase RFL is expressed at axils of leaves (Rao et al., 2008). In rice FMs expression is restricted to primordia of lodicules, stamens, carpels and ovules (Ikeda-Kawakatsu et al., 2012). Knockdown of RFL activity or loss of function mutants show delayed flowering and poor panicle branching with reduced number of florets and lower fertility (Rao et al., 2008, Ikeda-Kawakatsu et al., 2012). In some genotypes reduced vegetative axillary branching is also compromised (Rao et al., 2008). On the other hand RFL overexpression leads to the early flowering, attributing a role as an activator for the transition of vegetative meristems to inflorescence meristems (Rao et al., 2008). Thus, RFL shows a distinct developmental expression profile, has unique mutant phenotypes as compared to Arabidopsis LFY thus indicating a divergence in functions. We have used various functional genomics approaches to investigate regulatory networks controlledby RFL in the vegetative axillary meristems and in branching panicles with florets. These regulatory effects influence tillering and panicle branching, thus contributing to rice plant architecture.
RFL functions in axillary meristem
Vegetative AMs are secondary shoot meristems whose outgrowth determines plant architecture. In rice, AMs form tillers from basal nodes and mutants with altered tillering reveal that an interplay between transcription factors and the phytohormones - auxin, strigolactone underpins this process. We probed the relationship between RFL and other factors that control AM development. Our findings indicate that the derangements in AM development that occur on RFL knockdown arise from its early effects during specification of these meristems and also later effects during their outgrowth of AM as a tiller. Overall, the derailments of both steps of AM development lead to reduced tillering in plants with reduced RFL activity. Our studies on the gene expression status for key transcription factor genes, genes for strigolactone pathway and for auxin transporters gave an insight on the interplay between RFL, LAX1 and strigolactone signalling. Expression levels of LAX1 and CUC genes, that encode transcription factors with AM specification functions, were modulated upon RFL knockdown and on induction of RFL:ΔGR fusion protein. Thus our findings imply a likely, direct activating role for RFL in AM development that acts in part, through attaining appropriate LAX1 expression levels. Our data place meristem specification transcription factors LAX1 and CUC downstream to RFL. Arabidopsis LFY has a predominant role in conferring floral meristem (FM) identity (Weigel et al., 1992; Wagner, 2009; Irish, 2010; Moyroud et al., 2010). Its functions in axillary meristems were not known until recently. The latter functions were uncovered with the new LFYHARA allele with only partial defects in floral meristem identity (Chahtane et al., 2013). This mutant allele showed LFY can promote growth of vegetative AMs through its direct target REGULATOR OF AXILLARY MERISTEMS1 (RAX1), a R2R3 myb domain factor (Chahtane et al., 2013). These functions for Arabidopsis LFY and RAX1 in AMs development are parallel to and redundant with the pathway regulated by LATERAL SUPPRESSOR (LAS) and REGULATOR OF AXILLARY MERISTEM FORMATION1 (ROX1) (Yang et al., 2012; Greb et al., 2003). Interestingly, ROX1 is orthologous to rice LAX1 and our data show LAX1 expression levels in rice panicles and in culms with vegetative AMs is dependent on the expression status of RFL. Thus, we speculate that as compared to Arabidopsis AM development, in rice the LFY-dependent and LFY-independent regulatory pathways for AMs development are closely linked. In Arabidopsis, CUC2 and CUC3 genes in addition to their role in shoot meristem formation and organ separation play a role in AM development possibly by defining a boundary for the emerging AM. These functions for the Arabidopsis CUC genes are routed through their effects on LAS and also by mechanisms independent of LAS (Hibara et al., 2006; Raman et al., 2008). These data show modulation in RFL activity using the inducible RFL:∆GR protein leads to corresponding expression changes in CUC1/CUC2 and CUC3 genes expression in culm tissues. Thus, during rice AM development the meristem functions of RFL and CUC genes are related.
Consequent to specification of AM the buds are kept dormant. Bud outgrowth is influenced by auxin and strigolactone signalling pathways. We investigated the transcript levels, in rice culms of genes involved in strigolactone biosynthesis and perception and found the strigolactone biosynthesis gene D10 and hormone perception gene are significantly upregulated in RFL knockdown plants. Further, bioassays were done for strigolactone levels, where we used arbuscular mycorrhiza colonization assay as an indicator for strigolactone levels in wild type plants and in RFL knockdown plants. These data validate higher strigolactone signalling in RFL knockdown plants. To probe the relationship between RFL and the strigolactone pathway we created plants knocked down for both RFL and D3. For comparison of the tillering phenotype of these double knockdown plants we created plants with D3 knockdown alone. We observed reduced tillering in plants with knockdown of both RFL and D3 as compared to the tiller number in plants with knockdown of D3 alone. These data suggest that RFL acts upstream to D3 of control bud outgrowth. As effects of strigolactones are influenced by auxin transport we studied expression of OsPIN1 and OsPIN3 in RFL knockdown plants. Their reduced expression was correlated with auxin deficiency phenotypes of the roots in RFL knockdown plants. These data in conjunction with observations on OsPIN3 the gene expression modulation by the induction of RFL:∆GR allow us to speculate on a relationship between RFL, auxin transport and strigolactones with regard to bud outgrowth. We propose that the low tillering phenotype of RFL knockdown plants arises from weakened PATS, consequent to low levels of PIN1 and PIN3, coupled with moderate increase in strigolactones. Taken together, our findings suggest functions for RFL during AM specification and tiller bud outgrowth.
RFL functions in panicle branching
Prior studies on phenotypes of RFL knockdown or loss of function mutants suggested roles for RFL in transition to flowering, inflorescence meristem development, emergence of lateral organs and floral organ development (Rao et al., 2008; Ikeda-Kawakatsu et al., 2012). It has been speculated that RFL acts to suppress the transition from inflorescence meristem to floral meristem through its interaction with APO1 (Ikeda-Kawakatsu et al., 2012). The downstream genes regulated by RFL in these processes have not yet been elucidated. To identify direct targets of RFL in developing panicles we adopted ChIP-seq coupled with studies on gene expression modulation on induction of RFL. For the former we raised polyclonal anti-sera and chromatin from branching panicles with few florets. For gene expression modulation studies, we created transgenics with a T-DNA construct where an artificial miRNA against 3’UTR specifically knocked endogenous RFL and the same T-DNA had a second expression cassette for generation of a chemically inducible RFL-ΔGR protein that is not targeted by amiR RFL. Our preliminary ChIP-seq data in the wild type panicle tissues hints that RFL binds to hundreds of loci across the genome thus providing first glimpse of direct targets of RFL in these tissues. These data, while preliminary, were manually curated to identify likely targets that function in flowering, we summarize here some key findings. Our study indicates a role of RFL in flowering transition by activating genes like OsSPL14 and OsPRMT6a. Recent studies indicate that OsSPL14 directly binds to the promoter of OsMADS56 or FTL1, the rice homologs of SOC1 and FT to promote flowering (Lu et al., 2013). As RFL knockdown plants show highly reduced expression of OsMADS50/SOC1 and for RFT1 (Rao et al., 2008), and we show here RFL can bind and induce OsSPL14 expression we suggest the RFL¬OsSPL14 module can contribute to the transition of the SAM to flowering. Further, OsSPL14 in the young panicles directly activates DENSE AND ERECT PANICLE1 (DEP1) to control panicle length (Lu et al., 2013). Thus RFL-OsSPL14-DEP1 module could explain the role of RFL in controlling panicle architecture (Rao et al., 2008; Ikeda-Kawakatsu et al., 2012). Thus RFL plays a role in floral transition and this function is conserved across several LFY homologs.
Our data ChIP-seq in the wild type tissue and gene expression modulation studies in transgenics also give molecular evidences for the role of RFL in suppression of floral fate. The direct binding of RFL to OsMADS17, OsYABBY3, OsMADS58 and HD-ZIP-IV loci and the changes in their transcript levels on induction of RFL support this hypothesis. Once the transition from SAM to FM takes place, we speculate RFL represses the conversion of inflorescence branch meristems to floral fate by negatively regulating OsYABBY3, HD-ZIP class IV and OsMADS17 that can promote differentiation. These hypotheses indicate a diverged function for RFL in floral fate repression. Arabidopsis LFY is known to activate the expression of AGAMOUS (AG), whose orthologs in rice are OsMADS3 and OsMADS58. Our studies confirm conservation with regard to RFL binding to cis elements at OsMADS58 locus that is homologous to Arabidopsis AG. But importantly we show altered consequences of this binding on gene expression. We find RFL can suppress the expression of OsMADS58 which we speculate can promote a meristematic fate. Further, we also present the abnormal upregulation of floral organ fate genes on RFL downregulation. These data too indicate functions of RFL, are in part, distinct from the role of Arabidopsis LFY where it works in promoting floral meristem specification and development. These inferences are supported by our data that rice gene homologs for AP1, AP3 and SEP3 are not directly regulated by RFL, unlike their direct regulation by Arabidopsis LFY during flower development. We also report the expression levels of LAX1, FZP, OsIDS1 and OsMADS34 genes involved in meristem phase change and IM branching are RFL dependent. This is consistent with its role in the suppression of determinacy, thereby extending the IM activity for branch formation. But as yet we do not know if these effects are direct. Together, our data report direct targets of RFL that contribute to its functions in meristem regulation, flowering transition, and suppression of floral organ development. Overall, our preliminary data on RFL chromatin occupancy combined with our detailed studies on the modulation of gene expression provides evidence for targets and pathways unique to the rice RFL during inflorescence development.
Comparative analysis of genes downstream to RFL in vegetative tillers Vs panicles
Tillers and panicle branches arise from the axillary meristems at vegetative and reproductive stages, respectively, of a rice plant and overall contribute to the plant architecture. Some regulatory factors control branching in both these tissues - for example, MOC1 and LAX1. Mutants at these loci affect tillers and panicle branch development thus indicating common mechanisms control lateral branch primordia development (Li et al., 2003; Komatsu et al., 2003; Oikawa and Kyozuka, 2009). Knockdown of RFL activity or loss-of-function mutants cause significantly reduced panicle branching and in few instances, reduction in vegetative axillary branching (Rao et al., 2008; Ikeda- Kawakatsu et al., 2012). We took up the global expression profiling of RFL knockdown plants compared to wild type plants in the axillary meristem and branching panicle tissue. These data provide a useful list of potential targets of RFL in axillary meristem and branching panicle tissue. The comparative analysis of the genes affected in the two tissues indicates only a subset of genes is affected by RFL in both the vegetative axillary meristems and branching panicle. These genes include transcription factors (OsSPL14, Zn finger domain protein, and bHLH domain protein), hormone signalling molecules (GA2 ox9) and cell signalling (LRR protein) as a set of genes activated by RFL in both tissues. On the other hand, these comparative expression profiling studies also show distinct set of genes deregulated by RFL knockdown in these two tissues therefore implicating RFL functions have a tissue-specific context. The genes deregulated only in axillary meristem tissue only include D3- involved in the perception of strigolactone, OsMADS34 speculated to have a role in floral transition and RCN1 involved in transition to flowering. On the other hand, the genes – CUC1, OsMADS3, OsMADS58 involved in organ development and floral meristem determination were found to be deregulated only in panicle tissues of RFL knockdown plants. These data point towards presence of distinct mechanisms for the development of AMs as tillers versus the development of panicle axillary as rachis branches. Overall, these data implicate genes involved in transition to flowering, axillary meristem development and floral meristem development are controlled by RFL in different meristems to thereby control plant architecture and transition to flowering.
|
Page generated in 0.4514 seconds