Spelling suggestions: "subject:"low measurement"" "subject:"flow measurement""
61 |
Mean flow measurements of heated supersonic slot injection into a high Reynolds number supersonic streamSmith, Benjamin Robert January 1989 (has links)
Mean flow measurements and short-duration Schlieren and Shadowgraph photographs of heated and unheated supersonic slot injection of air into a supersonic air stream are presented for the purpose of observing the mixing which occurs in the resulting shear layer. The heated injected jet (M<sub>j</sub>, P<sub>tj</sub> = 10.7 psia, and T<sub>tj</sub> = 760°R) passes through a slot of height 0.475 inches (1.2 cm) tangent to a free stream with M<sub>∞</sub> = 3.0, P<sub>∞</sub>= 95 psia and T<sub>t</sub><sub>∞</sub> = 540°R. The resulting density ratio is P<sub>j</sub> / P<sub>∞</sub> = 0.3. The free stream Re/ft = 6.1 x 10⁷ (Re/cm = 2 x 10⁶). The thickness of the plate which separates the primary and secondary flows is 0.021 inches (0.052 cm). Pitot pressure, cone static pressure and stagnation temperature profiles are obtained at four axial stations downstream of the slot (x/H = 0.25, 4, 10, 20). An additional set of measurements is obtained at Station 4 for the case of a weak shock (P₂/P₁ = 1.8) interacting with the shear layer just upstream of Station 4. From the pressure and temperature measurements, Mach number, velocity, density, mass flux and static pressure profiles are generated. An unheated injection study is also performed at the same flow conditions for comparison to the heated case. The heated and unheated cases are very similar except in the slot where the temperature difference creates changes inp, U, and pU. This study is thus concerned with the effects of changes in P<sub>j</sub> / P<sub>∞</sub> and U<sub>j</sub> / U<sub>∞</sub>, especially (U<sub>j</sub> - U<sub>∞</sub>), which are created by heating the injected flow. The heated slot flow did not create a marked difference in the location of the merging of the free stream boundary layer with the slot flow when compared to the unheated slot flow. Indeed, the appearance of the two flows on Schlieren photographs is similar even though the injected mass flow in the heated case is about 15% less than that in the unheated case. The pressure adjustments in the slot lip region are different for the two different cases. The flowfields are documented for both the heated and unheated cases with the added measurements and photographs for the shock impingement case. / Master of Science
|
62 |
Non-Invasive Flow Measurement Via Distributed Acoustic Sensing Utilizing Frequency Spectra Analysis of Wall Pressure FluctuationsSnider, Steven Michael 24 February 2023 (has links)
This research describes a method of using distributed acoustic sensing to noninvasively measure volumetric flow rate via multiple unique sensor styles. This work modifies previously used methods of flow detection via fiber optic acoustic sensors affixed onto the exterior body of a flow apparatus. Flow rate measurement methods for two unique sensor styles are described.
Weak trends are additionally observed as a function of flow temperature that may represent opportunity for future optimization.
A discussion of current noninvasive flow rate measurement methods is given as well as their limitations. A background of distributed acoustic sensing is presented along with a summary of its fundamentals as well as its functionality in noninvasive flow rate measurement. A description of previous techniques that utilized distributed acoustic sensing in conjunction with fiber optic acoustic sensing is shown.
The acoustic properties of the fluid-induced vibrations are measured as a function of flow rate and flow temperature utilizing a special type of fiber optic sensor. Numerically smoothed frequency domain acoustic peaks are evaluated by intensity, area, central frequency, and full width at half maximum as flow conditions vary. All tested sensors were found to yield a strong dependence between peak intensity and flow rate. A dependence between central frequency and flow temperature was observed in some cases. The sensor system developed was able to measure fluid-induced vibration intensity and vibrational central frequency and offers potential uses in a myriad of vibrational applications. / Master of Science / This research provides a method of measuring fluid-induced vibrations caused by internal pressure fluctuations stemming from a variety of flow conditions. In this case, a specially fabricated optical fiber is applied to the external surface of the pipe. As water flows at a known volumetric flow rate and temperature, the acoustic signal generated is detected by the optical sensor signal demodulation system. The fiber used is a silicate material designed to transmit optical signals over long distances with minimal loss. Modifications to the fiber can be made to differentiate the measured optical signal loss by frequency band, as well as to designate the spatial position on a fiber sensor to locate where loss is occurring. By measuring optical loss of distinct fiber spatial positions at high sampling frequencies, an abundance of sensing opportunities become available. In knowing optical signal travel time of select wavelengths to corresponding strain characteristics amongst a section of fiber, optoelectronic devices with strong computing power called interrogators can powerfully measure the intensity and rate of fiber strain at a significantly high sampling frequency.
Fiber optic sensors have been used in many areas where monitoring of changes in positional microstrain is desired. Such sensors are embedded in-ground for seismic monitoring, as well as on the ocean floor for submarine structural characterization with long singular fibers. Flow rate measurement is performed with fiber coils and various other geometries for active oil wells, fission reactors, and other areas. Improving the performance and applicational flexibility of these sensors allows for greater opportunity for scientific advancement in an array of fields.
This research was completed to offer a new method of flow rate measurement while also gauging if flow temperature was able to be measured via a single fiber optic sensor. Fiber strain was observed to be strongly dependent on flow rate, whereas the rate at which strain occurred suggests simultaneous flow and temperature measurement is possible in certain types of fiber arrangements. The work produced in this research is a step towards singular-fiber flow rate and temperature sensing.
|
63 |
Flexibilní měření toků na síti / Flexible Network Flow MeasurementVarga, Ladislav January 2010 (has links)
This thesis deals with designing the probe used for measuring network flows. It contains theoretical analysis of network measurment topic, description of algorithms and principles used for network flow measurement. Emphasis on the probe architecture lies on efficient indexing algorithm and flow record flexibility, such that user is able to define format of flow record.
|
64 |
Měření průtoku kapalin / Liquid flow measurementHradil, Jiří January 2011 (has links)
In my master’s thesis, I consider with flow measurement. In shortness is described principle of flow sensors functionality, its advantages and disadvantages. I designed and made device for practice measurement of flow. On this device are installed three flowmeters The characteristic of this flowmeters were measured and evaluated. I made program in LabVIEW to collect and analyze information from instaled flowmeters.
|
65 |
Development of Specialized Laser Doppler Velocimeters for High Resolution Flow Profile and Turbulence Spectral MeasurementsBrooks, Donald Ray 05 June 2014 (has links)
Fluid dynamicists are always in need of innovative instruments for flow velocity measurements. An ideal instrument would be non-intrusive, have a very fine spatial resolution as well as a very fine temporal resolution, be able to measure three-components of velocity, and be compact. Through recent advancements, laser Doppler velocimetry can now meet all of those requirements making it an important part of aerodynamicist's research toolbox.
The first paper presented in this manuscript style thesis explains the development of an advanced three-velocity component, spatially-resolving laser-Doppler velocimetry (LDV) system for highly resolved velocity measurements in situations with limited optical access. The new instrument, a next generation version of the previously developed 'comprehensive' LDV technology, enables measurements of three components of velocity and particle position in the axial direction all through a single transceiving lens. Described here is the design process and the final design for the 'compact, comprehensive' LDV (Comp²LDV). The probe was designed to achieve ± 10 micron root-mean-square uncertainties in axial particle position, which combined with the long measurement volume, allow researchers to obtain a three-velocity-component velocity statistics profiles over a span of approximately 1.5mm without the need for traversing. Results from measurements in a flat plate turbulent boundary layer very near the wall have compared favorably to data from previous studies.
The second paper focuses on the motion and evolution of coherent structures in supersonic jet flows and how that relates to the intense noise the flows generate. As a preliminary study to experimentally address these relationships, novel non-intrusive measurements using two-component laser Doppler velocimetry (LDV) have been conducted at exceptionally high data rates to lend insight into the statistical behavior of noise-generating flow structures. A new heated supersonic jet facility has been constructed to provide supersonic flow at total temperatures ratios (T₀/Tₐ) up to 3. In the present work, the instrumentation is validated via comparison of LDV measurements along the centerline of a screeching cold jet with microphone and high-speed shadowgraph results. Reynolds stress spectra are presented for an over-expanded case (nozzle pressure ratio of 3.2) of a design Mach number 1.65 nozzle operated cold (T₀/Tₐ = 1). A preliminary study was then conducted in the near-nozzle shear layer, up to x/d = 4.0, at design nozzle pressure ratio (4.58) and total temperature ratio of 2.0. Results are presented for Reynolds stress time-delay correlations and power spectra at Re_d = 1.1M for this case. The stream-wise Reynolds normal stress spectra are compared with published spectral behavior reported by other researchers, indicating a similar spectral shape in the downstream stations as previously measured with LDV and hot wire anemometry for cold jets, but which differ in shape from density-based techniques. / Master of Science
|
66 |
Ultrasonic borehole flowmeterDu Preez, M., Hertzog, P. January 2008 (has links)
Published Article / Although research has been conducted in the field of Acoustic Doppler Borehole Flowmeters (ADBF), it has been focused on point source of flow and three dimensional borehole flow techniques. However as of yet, no studies have been conducted on the possible use of Acoustic Doppler Borehole Profiling (ADBP). This technique of borehole flow measurement is possibly a revolutionary concept in how vertical flow in a borehole is measured. It makes use of a single inexpensive transducer that can float on the surface of the water in a borehole and use Acoustic Doppler techniques to profile the flow in a borehole. No complicated and expensive flow probe winching systems will be required. Another added benefit of the ADBP will be the non-evasive technologies that comprise its design. Current borehole flow probes are required to be present at the point of flow measurement in the borehole. The presence of the probe inadvertently alters the flow in the borehole by adding resistance to the flow in the borehole. Under stressed or pumped flow tests these flow resistance effects cause sufficient pressure gradients at the flow sensors to divert part of the flow away from the sensor. This causes erroneous readings of flow as a part of the flow in the borehole is not accounted for. In ADBP the sensor is not physically present at the point of flow being read. This makes the ADBP technique of borehole flow measurement far more representative of the natural flow conditions in the borehole under ambient and stressed conditions.
|
67 |
Interferometric filter-based planar Doppler velocimetryLu, Zenghai January 2008 (has links)
This thesis describes the development of a Mach-Zehnder interferometric filter based planar Doppler velocimetry (MZI-PDV) flow measurement technique. The technique uses an entirely new optical system, an unbalanced MZI incorporating glass blocks for wavefront-matching, to replace the iodine cell currently used in conventional PDV. The free spectral range of the interferometric filter can be selected by adjusting the optical path difference of the MZI. This allows the velocity measurement range, sensitivity and resolution to be varied. This system offers no restricts to the choice of laser wavelength of operation which is not the case with most techniques. Two techniques to process the interference fringe images are presented. The first uses the shift of the fringe pattern to determine the Doppler frequency shift along profiles. The second provides a full-field measurement by normalising the received light intensity at each pixel in the image. With the single camera MZI-PDV scheme, exact alignment of the two output images on the active area of the camera is automatic. This eliminates the pixel-matching problem in conventional two camera PDV systems. The technique allows the measurement of up to three components of the flow velocity across a plane defined by a laser light sheet. The construction of a single velocity component MZI-PDV system that incorporates a phase-locking system designed to stabilise the filter is described. Measurements are made on the velocity field of a rotating disc with maximum velocities of ~±70ms-1 and an axis-symmetric air jet (with a nozzle diameter of 20mm) with an exit velocity of ~85ms-1. Standard deviations in the measured velocities were found to be about 2.9 and 2ms-1 for the two processing methods respectively. The system was then modified to make 3-component velocity measurements using imaging fibre bundles to port multiple views to a single detector head, and the standard deviation of the velocity error is around ±3ms-1 for a maximum velocity of ~±30ms-1 in the field of view. The factors that will affect the quality of the interference fringe image are investigated including polarisation sensitivity of the two beam splitters and flatness of the optical components. The inclination angle and the optical path deviation have little effect on the contrast of the interference fringes since collimated light beams, rather than divergent ones, are used in the interferometer.
|
68 |
[en] METROLOGICAL ANALYSIS OF THE PERFORMANCE OF LIQUID FLOWRATE ULTRA-SONIC METERS AS A DIAGNOSTIC FOR CALIBRATION, INSTALLATION AND OPERATION / [pt] ANÁLISE METROLÓGICA DO DESEMPENHO DE MEDIDORES ULTRA-SÔNICOS DE VAZÃO DE LÍQUIDOS COMO DIAGNÓSTICO DE CALIBRAÇÃO, INSTALAÇÃO E OPERAÇÃOHELMITOM APARECIDO DA SILVA 28 October 2008 (has links)
[pt] Medidores ultra-sônicos de vazão de líquidos têm sido
utilizados cada vez
mais em medições fiscais devido à sua baixa incerteza de
medição. Esse medidor
utiliza a metodologia do tempo de trânsito, o
relacionamento entre a velocidade
medida e a vazão do escoamento se dá através da garantia de
um perfil conhecido
de escoamento, normalmente o perfil denominado de
completamente
desenvolvido. Como na prática existem distorções deste
perfil, o uso de vários
feixes acústicos pode compensar as discrepâncias, fazendo
com que a medição de
vazão tenha uma incerteza mais baixa. O Regulamento
Nacional, apresentado
pela ANP junto com o INMETRO, estipula que os medidores
fiscais de vazão de
líquidos devem ser calibrados pelo menos a cada 60 dias, a
menos que o histórico
de medição com os mesmos demonstre que outro intervalo
entre calibrações é
factível. Recentemente, foi proposto para o medidor ultra-
sônico de 5 canais, um
intervalo maior (4 anos), associado à garantia de
desempenho do medidor e da
manutenção do perfil do escoamento entre calibrações. Desse
modo, o objetivo
desse trabalho é a comprovação experimental de que o
diagnóstico de medição e
de manutenção do perfil de escoamento é uma ferramenta
importante para a
garantia de que a vazão de líquido está sendo medida
corretamente e dentro dos
critérios de medição fiscal estipulados pela legislação em
vigor. Para tal, um
sistema de aquisição de dados foi acoplado ao medidor
ultrasônico de 05 canais,
sendo então o medidor calibrado em dois laboratórios
acreditados pelo INMETRO
e pertencentes à Rede Brasileira de Calibração,
respectivamente com água e óleo
mineral registrando estes valores de referência, utilizados
também para uma
comparação entre as características metrológicas dos dois
laboratórios. A seguir, o
medidor foi instalado numa plataforma, demonstrando que as
características
metrológicas eram preservadas após sua instalação.
Finalmente, um dia de produção da plataforma de origem do
medidor foi monitorado, obtendo-se
informações sobre a confiabilidade das medições e de sua
incerteza. / [en] Ultrasonic flowmeters of liquids have been used each more
time in fiscal
measurements due to it low uncertainty of measure. That
meter uses the
methodology of transit time, the relationship between the
measured speed and the
flow was made through the warranty of flow profile, usually
denominated profile
of completely developed. As in practice distortions of this
profile exist, the use of
several acoustic bunches can compensate the discrepancies,
doing with that the
flow measurement has a lower uncertainty. The Oficial
Document of
ANP/INMETRO determinated that the fiscal flowmeters of
liquids should be
calibrated at least every 60 days, unless the measurement
report demonstrate that
other interval among calibrations is feasible. Recently, a
larger interval was
proposed for the ultrasonic flowmeter of 5 channels (4
years), associate to the
warranty of acting of the meter and of the maintenance of
the flow profile among
calibrations. The aim of this work is the proof
experimental that the
measurement diagnosis and maintenance of flow profile is an
important tool for
the warranty that the liquid flow is being measured
correctly and inside of the
requirements of fiscal measurement determinated by the
actual legislation. This
way, a system of acquisition of data was coupled to the
ultrasonic flowmeter of 5
channels, then the meter calibrated in two laboratories
certified by INMETRO and
belong Brazilian Calibration Network, respectively with
water and mineral oil
registering these reference values, also used for a
comparison among the
metrological characteristics of the two laboratories.
After, the meter was install in
a platform, demonstrating that the metrological
characteristics was maintains after
it installation. Finally, a day of production of the
platform was monitored, being obtained
information about the reliability of the measurements and
of it uncertainty.
|
69 |
Low differential pressure and multiphase flow measurements by means of differential pressure devicesJusto, Hernandez Ruiz, 15 November 2004 (has links)
The response of slotted plate, Venturi meter and standard orifice to the presence of two phase, three phase and low differential flows was investigated. Two mixtures (air-water and air-oil) were used in the two-phase analysis while a mixture of air, water and oil was employed in the three-phase case. Due to the high gas void fraction (α>0.9), the mixture was considered wet gas. A slotted plate was utilized in the low differential pressure analysis and the discharge coefficient behavior was analyzed. Assuming homogeneous flow, an equation with two unknowns was obtained for the multi-phase flow analysis. An empirical relation and the differential response of the meters were used to estimate the variables involved in the equation. Good performance in the gas mass flow rate estimation was exhibited by the slotted and standard plates for the air-water flow, while poor results were obtained for the air-oil and air-water oil flows. The performance of all the flow meter tested in the analysis improved for differential pressures greater than 24.9 kPa (100 in_H2O). Due to the tendency to a zero value for the liquid flow, the error of the estimation reached values of more than 500% at high qualities and low differential pressures. Air-oil and air-water-oil flows show that liquid viscosity influences the response of the differential pressure meters. The best results for high liquid viscosity were obtained in the Venturi meter using the recovery pressure for the gas flow estimation at differential pressures greater than 24.9 kPa (100 in_H2O). A constant coefficient Cd was used for the low differential pressure analysis and results did show that for differential pressure less than 1.24 kPa (5 inH2O) density changes are less than 1% making possible the incompressible flow assumption. The average of the computed coefficients is the value of Cd.
|
70 |
Study of the dynamics of conductive fluids in the presence of localised magnetic fields. Application to the "Lorentz Force Flowmeter".Viré, Axelle 02 September 2010 (has links)
When an electrically conducting fluid moves through a magnetic field, fluid mechanics and electromagnetism are coupled.
This interaction is the object of magnetohydrodynamics, a discipline which covers a wide range of applications, from electromagnetic processing to plasma- and astro-physics.
In this dissertation, the attention is restricted to turbulent liquid metal flows, typically encountered in steel and aluminium industries. Velocity measurements in such flows are extremely challenging because liquid metals are opaque, hot and often corrosive. Therefore, non-intrusive measurement devices are essential. One of them is the Lorentz force flowmeter. Its working principle is based on the generation of a force acting on a charge, which moves in a magnetic field. Recent studies have demonstrated that this technique can measure efficiently the mean velocity of a liquid metal. In the existing devices, however, the measurement depends on the electrical conductivity of the fluid.
In this work, a novel version of this technique is developed in order to obtain measurements that are independent of the electrical conductivity. This is particularly appealing for metallurgical applications, where the conductivity often fluctuates in time and space. The study is entirely numerical and uses a flexible computational method, suitable for industrial flows. In this framework, the cost of numerical simulations increases drastically with the level of turbulence and the geometry complexity. Therefore, the simulations are commonly unresolved. Large eddy simulations are then very promising, since they introduce a subgrid model to mimic the dynamics of the unresolved turbulent eddies.
The first part of this dissertation focuses on the quality and reliability of unresolved numerical simulations. The attention is drawn on the ambiguity that may arise when interpretating the results. Owing to coarse resolutions, numerical errors affect the performances of the discrete model, which in turn looses its physical meaning. In this work, a novel implementation of the turbulent strain rate appearing in the models is proposed. As opposed to its usual discretisation, the present strain rate is in accordance with the discrete equations of motion. Two types of flow are considered: decaying turbulence located far from boundaries, and turbulent flows between two parallel and infinite walls. Particular attention is given to the balance of resolved kinetic energy, in order to assess the role of the model.
The second part of this dissertation deals with a novel version of Lorentz force flowmeters, consisting in one or two coils placed around a circular pipe. The forces acting on each coil are recorded in time as the liquid metal flows through the pipe. It is highlighted that the auto- or cross-correlation of these forces can be used to determine the flowrate. The reliability of the flowmeter is first investigated with a synthetic velocity profile associated to a single vortex ring, which is convected at a constant speed. This configuration is similar to the movement of a solid rod and enables a simple analysis of the flowmeter. Then, the flowmeter is applied to a realistic three-dimensional turbulent flow. In both cases, the influence of the geometrical parameters of the coils is systematically assessed.
|
Page generated in 0.0573 seconds