Spelling suggestions: "subject:"low measurement"" "subject:"flow measurement""
91 |
Hydraulic Effects of Perpendicular Water Approach Velocity on Meter Gate Flow MeasurementThorburn, John M 01 August 2020 (has links) (PDF)
Accurate flow measurement is required to effectively manage water resources. California Senate Bill X7-7 (SB X7-7), legislates this need by requiring agricultural water providers serving areas greater than 25,000 acres to develop an Agricultural Water Management Plan (AWMP) and adopt pricing based at least partly on volumetric water deliveries (DWR, 2009). This study focused on two of the most common flow measurement/flow control devices used in California open channel water conveyance systems: the circular meter gate and the rectangular meter gate. Testing was conducted on three Armco-type (round gates over round discharge pipe) gates measuring 12”, 18”, and 24” and two rectangular gates (rectangular gates over round discharge pipe) measuring 18” and 24”. The three round gates used in the study were the Model 101C produced and provided by Fresno Valve and Castings Incorporated. The two rectangular meter gates were manufactured by Mechanical Associates located in Visalia, California and provided by the San Luis Canal Company located in Dos Palos, California. Testing was conducted in an outdoor laboratory setting at the Irrigation Training and Research Center’s (ITRC) Water Resources Facility at the California Polytechnic State University in San Luis Obispo, California under a variety of flow conditions as experienced in the field in order to: 1) evaluate the effectiveness of these gates as flow measurement devices and determine whether they meet the volumetric accuracy requirements outlined in SB X7-7, 2) develop standards for installation and use that improve flow measurement accuracy, 3) configure more accurate gate rating tables based on updated coefficient of discharge values, and 4) determine if additional gate rating tables are needed for “high” supply channel velocities. The meter gate was set perpendicular to the supply channel. Baseline data was first collected through testing with low supply channel water velocities. Additional testing was then conducted with high supply channel water velocities to analyze the effect on the coefficient of discharge. Based on previous studies it was hypothesized that as the Froude number (FR#) in the supply channel increased (water approach velocity increased), the coefficient of discharge would decrease as a result of an increase in energy needed for the perpendicular velocity transition. Data evaluation, however, indicated no statistically significant effect of water approach velocity on the coefficient of discharge for the 12”, 18” and 24” circular gates or the 18” and 24” rectangular gates at an α-level = 0.01. When operating the gates under recommended conditions relative flow uncertainty was within +/- 5%. This meets the accuracy requirements set by SB X7-7 for turnout flow measurement devices. Based on the results of this study, Cd values do not need to be adjusted for Froude numbers up to 0.35 for any of the studied gates. It should be noted, however, that while most meter gates used will be in conditions where supply channel Froude numbers do not exceed 0.35, further research is needed to study potential effects from Froude numbers exceeding the range found in this study.
|
92 |
An Experimental Study of Longitudinally Embedded Vortices in a Turbulent Boundary Layer via the Non-Invasive Comprehensive LDV TechniqueDerlaga, Joseph Michael 05 June 2012 (has links)
This report documents the measurements of turbulence quantities resulting from vortices embedded in a zero pressure gradient turbulent boundary layer. Turbulent boundary layers are found in most flow regimes over large scale vehicles and have been studied for many years. Various systems to control separation of boundary layers have been proposed, but vortex generators have proven to be an economical choice as they are often used to fix deficiencies in a flow field after large scale production of a vehicle has commenced. In order to better understand the interaction between vortex generators and the boundary layer in which they are embedded, an experiment has been performed using through non-invasive Comprehensive Laser Doppler Velocimeter.
The results show that normalization on edge velocity is appropriate for comparison with previous work. The 1/S parameter and vq^2 parameter were found to be most appropriate to correlate the Reynolds stresses and triple products, respectively. The higher inflow edge velocity and greater momentum thickness, creating a lower vortex generator to boundary layer height ratio, result in a more diffuse vortex as compared to previous work conducted in the same wind tunnel, with the same geometry, but with different inflow conditions. / Master of Science
|
93 |
Uncertainty quantification techniques with diverse applications to stochastic dynamics of structural and nanomechanical systems and to modeling of cerebral autoregulationKatsidoniotaki, Maria January 2022 (has links)
This dissertation develops uncertainty quantification methodologies for modeling, response analysis and optimization of diverse dynamical systems. Two distinct application platforms are considered pertaining to engineering dynamics and precision medicine.
First, the recently developed Wiener path integral (WPI) technique for determining, accurately and in a computationally efficient manner, the stochastic response of diverse dynamical systems is employed for solving a high-dimensional, nonlinear system of stochastic differential equations governing the dynamics of a representative model of electrostatically coupled micromechanical oscillators. Compared to alternative modeling and solution treatments in the literature, the current development exhibits the following novelties: a) typically adopted linear, or higher-order polynomial, approximations of the nonlinear electrostatic forces are circumvented; and b) stochastic modeling is employed, for the first time, by considering a random excitation component representing the effect of diverse noise sources on the system dynamics.
Further, the WPI technique is enhanced and extended based on a Bayesian compressive sampling (CS) treatment. Specifically, sparse expansions for the system response joint PDF are utilized. Next, exploiting the localization capabilities of the WPI technique for direct evaluation of specific PDF points leads to an underdetermined linear system of equations for the expansion coefficients. Furthermore, relying on a Bayesian CS solution formulation yields a posterior distribution for the expansion coefficient vector. In this regard, a significant advantage of the herein-developed methodology relates to the fact that the uncertainty of the response PDF estimates obtained by the WPI technique is quantified. Also, an adaptive scheme is proposed based on the quantified uncertainty of the estimates for the optimal selection of PDF sample points. This yields considerably fewer boundary value problems to be solved as part of the WPI technique, and thus, the associated computational cost is significantly reduced.
Second, modeling and analysis of the physiological mechanism of dynamic cerebral autoregulation (DCA) is pursued based on the concept of diffusion maps. Specifically, a state-space description of DCA dynamics is considered based on arterial blood pressure (ABP), cerebral blood flow velocity (CBFV), and their time derivatives. Next, an eigenvalue analysis of the Markov matrix of a random walk on a graph over the dataset domain yields a low-dimensional representation of the intrinsic dynamics. Further dimension reduction is made possible by accounting only for the two most significant eigenvalues. The value of their ratio indicates whether the underlying system is governed by active or hypoactive dynamics, indicating healthy or impaired DCA function, respectively. The reliability of the technique is assessed by considering healthy individuals and patients with unilateral carotid artery stenosis or occlusion.
It is shown that the proposed ratio of eigenvalues can be used as a reliable and robust biomarker for assessing how active the intrinsic dynamics of the autoregulation is and for indicating healthy versus impaired DCA function. Further, an alternative joint time-frequency analysis methodology based on generalized harmonic wavelets is utilized for assessing DCA performance in patients with preeclampsia within one week postpartum, which is associated with an increased risk for postpartum maternal cerebrovascular complications. The results are compared with normotensive postpartum individuals and healthy non-pregnant female volunteers and suggest a faster, but less effective response of the cerebral autoregulatory mechanism in the first week postpartum, regardless of preeclampsia diagnosis.
|
94 |
The construction of a wind tunnel and the prosecution of certain problems of research connected with itLybrook, Robert Custis, Price, William David January 1931 (has links)
M.S.
|
95 |
The construction of a wind tunnel and the prosecution of certain problems of research connected with itJanuary 1931 (has links)
M.S.
|
96 |
Development of Advanced Image Processing Algorithms for Bubbly Flow MeasurementFu, Yucheng 16 October 2018 (has links)
An accurate measurement of bubbly flow has a significant value for understanding the bubble behavior, heat and energy transfer pattern in different engineering systems. It also helps to advance the theoretical model development in two-phase flow study. Due to the interaction between the gas and liquid phase, the flow patterns are complicated in recorded image data. The segmentation and reconstruction of overlapping bubbles in these images is a challenging task. This dissertation provides a complete set of image processing algorithms for bubbly flow measurement. The developed algorithm can deal with bubble overlapping issues and reconstruct bubble outline in 2D high speed images under a wide void fraction range. Key bubbly flow parameters such as void fraction, interfacial area concentration, bubble number density and velocity can be computed automatically after bubble segmentation. The time-averaged bubbly flow distributions are generated based on the extracted parameters for flow characteristic study. A 3D imaging system is developed for 3D bubble reconstruction. The proposed 3D reconstruction algorithm can restore the bubble shape in a time sequence for accurate flow visualization with minimum assumptions. The 3D reconstruction algorithm shows an error of less than 2% in volume measurement compared to the syringe reading. Finally, a new image synthesis framework called Bubble Generative Adversarial Networks (BubGAN) is proposed by combining the conventional image processing algorithm and deep learning technique. This framework aims to provide a generic benchmark tool for assessing the performance of the existed image processing algorithms with significant quality improvement in synthetic bubbly flow image generation. / Ph. D. / Bubbly flow phenomenon exists in a wide variety of systems, for example, nuclear reactor, heat exchanger, chemical bubble column and biological system. The accurate measurement of the bubble distribution can be helpful to understand the behaviors of these systems. Due to the complexity of the bubbly flow images, it is not practical to manually process and label these data for analysis. This dissertation developed a complete suite of image processing algorithms to process bubbly flow images. The proposed algorithms have the capability of segmenting 2D dense bubble images and reconstructing 3D bubble shape in coordinate with multiple camera systems. The bubbly flow patterns and characteristics are analyzed in this dissertation. Finally, a generic image processing benchmark tool called Bubble Generative Adversarial Networks (BubGAN) is proposed by combining the conventional image processing and deep learning techniques together. The BubGAN framework aims to bridge the gap between real bubbly images and synthetic images used for algorithm benchmark and algorithm.
|
97 |
Recirculation cell for the small-angle neutron scattering investigation of polymer melts in flowGough, Tim, Bent, J., Richards, R.W. January 2003 (has links)
No / A small-scale flow cell has been developed and used for small-angle neutron scattering (SANS) investigations of polymer melts in Poiseuille flow through a 4:1 contraction. The cell enables the investigation of polymer melt flow subject to a volumetric flow rate of up to 6 cm3 s-1, at pressures up to 10 MPa, temperatures up to 230°C, and a melt viscosity up to 65000 Pas. The cell has recirculating flow path and a relatively small capacity (circa 200 g of polymer) so that polymers with novel and well-defined molecular architectures may be investigated. The details of its construction and operation are described. When two walls of the cell are composed of zero order birefringent sapphire, both small-angle neutron scattering and birefringence studies can be undertaken in the same cell providing a link between macroscopic and molecular level descriptions of the influence of melt flow. Both birefringence and the first melt flow SANS data for a monodisperse, linear polystyrene are presented. These demonstrate the capability and potential of the apparatus to provide data which provide a crucial test for molecular theories of the rheology of entangled polymer melts. However, the use of sapphire windows limits the maximum flow rate that can be used and higher flows necessitated an all aluminum flow cell to cope with the higher pressures developed in flow. Clear evidence of a stretching of the molecule in the direction of the melt flow and a contraction perpendicular to the flow direction has been provided
|
98 |
Design and application of a novel Laser-Doppler Velocimeter for turbulence structural measurements in turbulent boundary layersLowe, K. Todd 20 November 2006 (has links)
An advanced laser-Doppler velocimeter is designed to acquire fully-resolved turbulence structural measurements in high Reynolds number two- and three-dimensional turbulent boundary layers. The new instrument combines, for the first time, new techniques allowing for the direct measurement of particle acceleration and sub-measurement-volume-scale position resolution so that second-order 3D particle trajectories may be measured at high repetitions. Using these measurements, several terms in the Reynolds stress transport equations may be directly estimated, giving new data for modeling and understanding the processes leading to the transport of turbulence in boundary layer flows.
Due to the unique performance of the probe, many aspects of LDV instrumentation development were addressed. The LDV configuration was optimized for lowest uncertainties by considering the demanding applications of particle position and acceleration measurements. Low noise light detection and signal conditioning was specified for the three electronic channels. A high-throughput data acquisition system allows for exceptional burst rate acquisition. Signal detection and processing algorithms have been implemented which draw from previous techniques but also address distinctive problems with the current system. In short, the instrument was designed to advance the state-of-the-art in LDV systems.
Measurements presented include turbulence dissipation rate and fluctuating velocity-pressure gradient correlations that have been measured in 2D and 3D turbulent boundary layers using the unique capabilities of the CompLDV--many of these measurements are the first of their kind ever acquired in high Reynolds number turbulent flows. The flat-plate turbulent boundary layer is studied at several momentum thickness Reynolds numbers up to 7500 to examine Reynolds numbers effects on terms such as the velocity-pressure gradient correlation and the dissipation rate in the Reynolds transport equations. Measurements are also presented in a pressure-driven three-dimensional turbulent boundary layer created upstream from a wing-body junction. The current results complement the extensive data from previous studies and provide even richer depth of knowledge on the most-completely-documented 3D boundary layer flow in existence. Further measurements include the wakes of three circular-cylinder protuberances submerged in a constant pressure turbulent boundary layer. / Ph. D.
|
99 |
Cloud computing based adaptive traffic control and managementJaworski, P. January 2013 (has links)
Recent years have shown a growing concern over increasing traffic volume worldwide. The insufficient road capacity and the resulting congestions have become major problems in many urban areas. Congestions negatively impact the economy, the environment and the health of the population as well as the drivers satisfaction. Current solutions to this topical and timely problem rely on the exploitation of Intelligent Transportation Systems (ITS) technologies. ITS urban traffic management involves the collection and processing of a large amount of geographically distributed information to control distributed infrastructure and individual vehicles. The distributed nature of the problem prompted the development of a novel, scalable ITS-Cloud platform. The ITS-Cloud organises the processing and manages distributed data sources to provide traffic management methods with more accurate information about the state of the traffic. A new approach to service allocation, derived from the existing cloud and grid computing approaches, was created to address the unique needs of ITS traffic management. The ITS-Cloud hosts the collection of software services that form the Cloud based Traffic Management System (CTMS). CTMS combines intersection control algorithms with intersection approach advices to the vehicles and dynamic routing. The CTMS contains a novel Two-Step traffic management method that relies on the ITS-Cloud to deliver a detailed traffic simulation image and integrates an adaptive intersection control algorithm with a microscopic prediction mechanism. It is the first method able to perform simultaneous adaptive intersection control and intersection approach optimization. The Two-Step method builds on a novel pressure based adaptive intersection control algorithm as well as two new traffic prediction schemes. The developed traffic management system was evaluated using a new microscopic traffic simulation tool tightly integrated with the ITS-Cloud. The novel traffic management approaches were shown to outperform benchmark methods for a realistic range of traffic conditions and road network configurations. Unique to the work was the investigation of interactions between ITS components.
|
100 |
Classification of environmental hydrologic behaviors in Northeastern United StatesKim, Kye Hyun, 1956- January 1989 (has links)
Environmental response to acidic deposition occurs through the vehicle of water movement in the ecosystem. As a part of the environmental studies for acidic deposition in the ecosystem, output-based hydrologic classification was done from basin hydrologies based on the distribution of the baseflow, snowmelt, and the direct runoff sources. Because of the differences in the flow paths and exposure duration, those components were assumed to represent distinct geochemical responses. As a first step, user-friendly software has been developed to calculate the baseflow based on the separation of annual hydrographs. It also generates the hydrograph for visual analysis using trial separation slope. After the software was completed, about 1200 stream flow gauging stations in Northeastern U.S. were accessed for flow separation and other hydrologic characteristics. At the final stage, based on the output from the streamflow analysis, cluster analysis was performed to classify the streamflow behaviors in terms of acidic inflow. The output from the cluster analysis shows more efficient regional boundaries of the subregions than the current regional boundaries used by U.S. Environmental Protection Agency (U.S.E.P.A.) for the environmental management in terms of acidic deposition based on the regional baseflow properties.
|
Page generated in 0.0693 seconds