Spelling suggestions: "subject:"lowering"" "subject:"flowering""
231 |
Factors regulating the population dynamics and damage potential of pollen beetle (Meligethes aeneus F.) on crops of oilseed rapeTölle, Marie-Luise 12 May 2011 (has links)
No description available.
|
232 |
Broadening genetic diversity in canola (Brassica napus) germplasm using the B. oleracea var. alboglabra C-genomeBennett, Rick A Unknown Date
No description available.
|
233 |
Role of light and temperature in the flowering of Watsonia species.Mtshali, Ntombizamatshali Prudence. January 2006 (has links)
The role of light and temperature on flowering of South African Watsonia species
were evaluated to assess the potential for this genus as a commercial flower crop.
Species were selected that represent different climatic regions of South Africa, with
the aim of understanding how ecologically distinct species perform under cultivation.
The four selected species were W. borbonica and W. tabularis (winter-rainfall area),
W. angusta (shared rainfall) and W. pillansii (summer-rainfall area).
In order to establish the optimum temperature required for flowering, plants were
exposed for 12 weeks to three temperature regimes (12/7 °C, 21/15 °C and 29/21 °C)
after attaining their first and/or second leaves. A temperature shift of 12/7 °C was
used to assess if the plants had a vemalisation requirement. Controls were
maintained under 25 % shade under natural conditions, with an average temperature
of 24/7 °C. An elevated temperature of 29/21 °C was detrimental to plant growth.
Moderate temperatures of 21/15 °C significantly (P<0.001) increased the height and
the number of leaves produced per plant relative to the 12/7 °C treatment. These
temperatures significantly (P<0.001) increased the total number of flowers produced
per plant compared to low temperatures. However, flowering percentage and quality
of flowers were reduced.
A low temperature regime of 12/7 °C was efficient in satisfying vernalisation
requirements and inducing flowering in four selected species. However, the total
number of leaves produced per plant was signifcantly reduced. The summer-rainfall
species, W pillansii, displayed a qualitative response to vernalisation, as no flowering
was observed in non-vernalised plants. Two winter-rainfall species, W borbonica and
W. tabularis, demonstrated a quantitative response to vernalisation. These species
flowered at non-vernalising temperatures. W angusta behaved like the winter-rainfall
species in terms of flowering. Overall, a vernalisaton treatment marginally reduced
days to flower while flowering percentage was increased compared to other
temperature regimes. However, there was no increase in the total number of flowers
produced per plant. Low temperatures were not only effective for flower induction, but
also for releasing corm dormancy, thus synchronising growth. Storing corms at either
4 or 10 QC resulted in 100 % sprouting within 4-6 weeks.
The role of daylength in flowering of Watsonia plants was established by subjecting
plants to long days (LO) of 16 h light and 8 h dark and to short days (SO) of 8 h light
and 16 h dark. The number of leaves and flowering were significantly (P<0.01)
promoted under the LO regime. However, there was strong temperature and
daylength interaction in terms of flowering potential, as at low temperatures flowering
was induced irrespective of daylength. In W. pillansii, flowering was obtained under
both regimes (LO and SO) applied at the second leaf stage. Flowering in W.
borbonica and W. tabularis was only observed under the LO regime at the second
leaf stage. In both species, flowering was also obtained in SD-treated plants,
provided treatment occurred after the formation of the third leaf. However, the total
number and quality of flowers were reduced.
To examine the effect of light intensity on flowering, plants at different developmental
stages (first and/or second or beyond the third leaf stage) were exposed to
photosynthetically active radiation (PAR) of 150 jJmol m-2s-1 or 39.5 jJmol m-2s-1 for 7
weeks. Exposure to low light intensity at either developmental stage compromised
leaf quality. No flowering was observed following low light intensity treatment during
the first to third leaf stages, even though plants were exposed to low temperature and
LO regimes, both of which promoted flowering. Observation of the shoot apical
meristem revealed that the second leaf stage was critical as the anatomical transition
to flowering occurred at this level. When beyond the third leaf stage, low light intensity
did not prevent flowering. However, the number of flowers produced per plant was
reduced compared to plants maintained at 150 jJmol m-2s-1. Thus, light intensity
played a role in both plant morphogenesis and flowering. LDs were effective in
promoting vegetative growth whereas high light intensity and low temperature
regimes played pivotal roles in flower induction. This makes them useful horticulture
tools to produce desirable Watsonia plants for commercialisation. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2006.
|
234 |
Comparative flowering ecology of Fraxinus excelsior, Acer platanoides, Acer pseudoplatanus and Tilia cordata in the canopy of Leipzig's floodplain forestTal, Ophir 03 June 2008 (has links) (PDF)
How do gender separation and the transition to wind pollination happen in temperate trees? What does the reproductive ecology in the crowns of temperate forest trees look like? These connected questions intrigued researchers before and since Darwin but it is only in the last years that a direct study of the latter question has been enabled. A research crane was used to study the flowering ecology of Fraxinus excelsior, Acer platanoides, Acer pseudoplatanus and Tilia cordata in Leipzig’s floodplain forest. These species originate from hermaphrodite insect pollinated plant families and exhibit different grades of gender separation and different stages between insect and wind pollination. As they are typical elements of temperate deciduous forests, an ecological comparison of their flowering ecology may shed new light on the evolution of gender separation and wind pollination in this habitat. Using the crane, gender distribution, flowering phenology in relation to microclimate, pollination levels (including pollen tubes in the styles) and fruit set were studied in ca. 200 trees over 2-4 years. Main results are a new appreciation of the sexual system of Fraxinus excelsior as dioecy, of Tilia cordata as andromonoecy and a detailed description of the intricacies of the heterodichogamous sexual system of Acer pseudoplatanus. Several flowering phenological patterns are described in Fraxinus excelsior and Acer platanoides in relation to microclimate in early spring. The role of small arthropods is underlined as gall mites may play a role in gender specialisation in Fraxinus excelsior, gall midges are related to maleness in T. cordata and thrips are probably the pollinators of Acer pseudoplatanus in the stand. Thrips pollination is suggested to be a possible stepping-stone between insect pollination and wind pollination, which may drive the transition in Acer pseudoplatanus and possibly in intensively flowering dominant species in other habitats. The study presents the complexity of the reproductive systems and the strong interdependencies among their elements.
|
235 |
Mutualistic interactions between the nectar-feeding little red flying-fox Pteropus scapulatus (Chiroptera: Pteropodidae) and flowering eucalypts (Myrtaceae): habitat utilisation and pollinationBirt, P. K. Unknown Date (has links)
No description available.
|
236 |
Mutualistic interactions between the nectar-feeding little red flying-fox Pteropus scapulatus (Chiroptera: Pteropodidae) and flowering eucalypts (Myrtaceae): habitat utilisation and pollinationBirt, P. K. Unknown Date (has links)
No description available.
|
237 |
Mutualistic interactions between the nectar-feeding little red flying-fox Pteropus scapulatus (Chiroptera: Pteropodidae) and flowering eucalypts (Myrtaceae): habitat utilisation and pollinationBirt, P. K. Unknown Date (has links)
No description available.
|
238 |
Mutualistic interactions between the nectar-feeding little red flying-fox Pteropus scapulatus (Chiroptera: Pteropodidae) and flowering eucalypts (Myrtaceae): habitat utilisation and pollinationBirt, P. K. Unknown Date (has links)
No description available.
|
239 |
Mutualistic interactions between the nectar-feeding little red flying-fox Pteropus scapulatus (Chiroptera: Pteropodidae) and flowering eucalypts (Myrtaceae): habitat utilisation and pollinationBirt, P. K. Unknown Date (has links)
No description available.
|
240 |
The reproductive biology of grapevines: factors that affect flowering and fruitset.Longbottom, Mardi L. January 2007 (has links)
Molybdenum experiments: In Australia young Merlot vines sometimes suffer from vegetative disorders such as slow, zigzagged growth and leaf distortion. Merlot is also particularly known as a low- and inconsistent-yielding grape variety. Previous research showed that when foliar applications of molybdenum (Mo) were applied to Merlot vines the vegetative symptoms improved. More recently, when sodium molybdate was applied to Mo-deficient Merlot, yield improved; a function of increased bunch weight brought about by bigger berries. It has also been reported that at high concentrations, molybdenum might be detrimental to yield. Experiments were conducted on own-rooted Merlot (clone D3V14) vines in commercial vineyards in the Adelaide Hills (Hills) and at McLaren Vale, South Australia. Effects of molybdenum deficiency on the vegetative growth and yield of Vitis vinifera cv. Merlot: The aims of the current study were to: a) elucidate the mechanism by which molybdenum affects yield of Merlot; b) to monitor the effects of Mo-treatment on the balance between vine reproductive and vegetative growth; c) to monitor the residual effects of Mo-treatment on growth and yield of Merlot and; d) to determine whether high concentrations of molybdenum are detrimental to yield. Three rates of sodium molybdate were applied to vines in springtime (control = 0g, rate 1 = 0.101g and rate 2 = 0.202g sodium molybdate per vine). Vine molybdenum status was measured prior to treatment and again at flowering time using petiole, shoot tip and inflorescence analysis. The effects on vegetative growth were monitored at veraison, during dormancy and at budburst in the seasons following Mo-treatment. At flowering time, pollen vitality, pollen tube growth and flower structure were examined. Bunch number per vine, fruitset, berry weight and berry composition were measured at harvest. In the Hills, the controls had adequate molybdenum however, at McLaren Vale petiolar molybdenum concentration fell within the suggested deficiency range of 0.05-0.09 mg/kg in the petioles at flowering time. No visual symptoms of Mo-deficiency were observed on the experimental vines. At McLaren Vale, Mo-treatment reduced pruning weight and improved vine balance. Mo-treated vines in the Hills and at McLaren Vale were affected by delayed budburst in the season following Mo-treatment irrespective of their Mo-status. However, no seasonal carryover of molybdenum could be detected in tissue analysis at flowering time. Juice total soluble solids, pH and titratable acidity were not affected by Mo-treatment at McLaren Vale or in the Hills. However, juice from Mo-treated vines in the Hills had a significantly higher concentration of molybdenum than the controls. At McLaren Vale there was no significant difference in juice molybdenum concentration between treatments. In the Hills, yield was not affected by Mo-treatment. However, Mo-treated vines at McLaren Vale had significantly higher yields (approximately double) than the Mo-deficient controls. Bunch number per vine was not affected by Mo-treatment, either in the year that treatments were applied or in the following season. However, bunches from Mo-treated vines had significantly better fruitset resulting in more berries per bunch. Berry weight was affected by Mo-treatment in one season only. Yield was not detrimentally affected on vines that received the higher rate of sodium molybdate. In the Hills, Mo-treatment did not affect pollen numbers, pollen vitality or pollen tube growth. At McLaren Vale, where the controls were Mo-deficient, pollen vitality was not affected by Mo-treatment. However, pollen tube growth was significantly enhanced by Mo-treatment. Significantly more pollen tubes penetrated the ovules from Mo-treated vines and a higher proportion of ovaries had at least one penetrated ovule. Structural observations revealed that a significantly higher proportion of ovules from Mo-deficient vines were defective. The absence of an embryo sac in those ovules is probably the cause of pollen tube growth inhibition and subsequent poor fruitset. Effects of mode of pollination on yield of Merlot and the interacting effects of sodium molybdate sprays: Pollination experiments were conducted on field-grown own-rooted Merlot (clone D3V14) vines in commercial vineyards in the Adelaide Hills and at McLaren Vale in 2003-04 and in 2004-05. Inflorescences were supplied with supplementary Merlot pollen (self-pollination), with pollen from another variety (cross-pollination) or they were left to pollinate naturally (open pollination). In the Hills, mode of pollination did not affect fruitset or berry weight. In 2003-04 fruitset increased significantly at McLaren Vale when inflorescences were cross-pollinated with Semillon. Applying supplementary Merlot pollen also tended to improve fruitset, however none of the treatments affected berry weight. In 2004-05 there was no significant difference between treatments. These results indicate that Merlot may be a poor producer of pollen and may suffer from self-incompatibility. Given the significant improvements in yield gained by spring foliar applications of sodium molybdate to Mo-deficient Merlot vines, in 2005-06 a reciprocal experiment was conducted to separate the effects of Mo-treatment and mode of pollination on the male and female flower parts. The aims of this experiment were to: a) determine whether the male or female reproductive organs are more important in determining the success of fruitset of Merlot and; b) determine which remedial measure, Mo-treatment or pollination, is more effective at overcoming poor fruitset. Supplementary pollination treatments—cross-pollination (Semillon); self-pollination (Mo-deficient pollen); self-pollination (Mo-treated pollen) and; open-pollination—were applied to Mo-treated and Mo-deficient vines. Cross-pollinating Mo-deficient vines with Semillon significantly improved fruitset of Merlot compared to other pollination treatments on those vines, however applying molybdenum to the vines in springtime was more effective at improving fruitset. Within the Mo-treated vines the effects of supplementary pollination on fruitset were not thought to be of any practical significance. The results of this experiment provide further evidence that Mo-deficiency affects the female flower parts more than the male reproductive organs of Merlot. The occurrence of ‘star’ flowers in Australia: In 2003 faulty flowers were discovered on Canada Muscat grown in the Coombe Vineyard at the University of Adelaide’s Waite Campus. The Canada Muscat flowers opened from the top in ‘star’ formation in contrast to normal grape flowers, which shed the calyptra from its base. Star flowers were reported in French literature in the late 1800s. They were reported to as a symptom of a ‘disease’ that caused ‘coulure’, the cure for which was vine removal. The current report is the first known report of star flowers occurring in Australia. Through dissemination of the news of this discovery, several star flower variants were found in other varieties in South Australia. The association of star flowers with poor berry development and the frequency of the occurrence of star flowers suggest that this flower aberration may be affecting yield to a greater extent than previously recognised. This study provides a detailed description of two types of star flowers: those that occur in response to environmental conditions and those that occur every season. Other star flower variants are also documented. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1280856 / Thesis (Ph.D.) -- University of Adelaide, School of Agriculture, Food and Wine, 2007
|
Page generated in 0.0727 seconds