Spelling suggestions: "subject:"flows"" "subject:"slows""
851 |
Experimental Investigation of Turbulent Flows at Smooth and Rough Wall-Cylinder JunctionsApsilidis, Nikolaos 10 January 2014 (has links)
Junction flows originate from the interaction between a fluid moving over a wall with an obstacle mounted on the same surface. Understanding the physics of such flows is of great interest to engineers responsible for the design of systems consisting of wall-body junctions. From aerodynamics to turbomachinery and electronics to bridge hydraulics, a number of phenomena (drag, heat transfer, scouring) are driven by the behavior of the most prominent feature of junction flows: the horseshoe vortex system (HVS). Focusing on turbulent flows, the complex dynamics of the HVS is established through its unsteadiness and non-uniformity. The fundamentals of this dynamically-rich phenomenon have been described within the body of a rapidly-expanding literature. Nevertheless, important aspects remain inadequately understood and call for further scrutiny. This study emphasized three of them, by investigating the effects of: model scale, wall roughness, and bed geometry. High-resolution experiments were carried out using Particle Image Velocimetry (PIV). Statistical analyses, vortex identification schemes, and Proper Orthogonal decomposition were employed to extract additional information from the large PIV datasets. The time-averaged topology of junction flows developing over a smooth and impermeable wall was independent of the flow Reynolds number, Re (parameter that expresses the effects of scale). On the contrary, time-resolved analysis revealed a trend of increasing vorticity, momentum, and eruptions of near-wall fluid with Re. New insights on the modal dynamics of the HVS were also documented in a modified flow mechanism. Wall roughness (modeled with a permeable layer of crushed stones) diffused turbulence and vorticity throughout the domain. This effect manifested with high levels of intermittency and spatial irregularity for the HVS. Energetic flow structures were also identified away from the typical footprint of the HVS. Finally, a novel implementation of PIV allowed for unique velocity measurements over an erodible bed. It was demonstrated that, during the initial stages of scouring, the downflow at the face of the obstacle becomes the dominant flow characteristic in the absence of the HVS. Notwithstanding modeling limitations, the physical insight contributed here could be used to enhance the design of systems with similar flow and geometrical characteristics. / Ph. D.
|
852 |
Neural network estimation of disturbance growth and flow field structure of spatially excited jetsFuller, Russell M. 18 September 2008 (has links)
Neural networks were applied to the estimation problem consisting of identifying both nearfield and quasi-farfield flow structures of a jet undergoing spatial mode excitation. The evolution of disturbances introduced by a spatially excited jet spans a linear and nonlinear regime in the downstream flow field. For the linear portion, the neural network was trained to identify critical flow field parameters using numerical data generated from linear stability analysis code. It was shown that the neural network could function as a multiple-input adaptive linear combiner over the linear nearfield of the jet flowfield. Beyond the nearfield (2.0 ≤ z/D ≤ 6.0), a back propagation neural network was trained using experimental data captured during different modal excitation patterns. Constant velocity contours for mode 0, mode 1, mode ±1, and mode ±2 jet excitations were accurately estimated using a low-order neural network filter with conditioned inputs. Moderate success was also demonstrated when the network was used to extrapolate flow field parameters outside the initial training set. This demonstration of using neural networks to predict flowfield structure in non-reacting flows is expected to be directly applicable to estimation and control of reacting flows in combustors. / Master of Science
|
853 |
The Effect of Combustor Exit to Nozzle Guide Vane Platform Misalignment on Heat Transfer over an Axisymmetric Endwall at Transonic ConditionsMayo, David Earl Jr. 01 July 2016 (has links)
This paper presents details of an experimental and computational investigation on the effect of misalignment between the combustor exit and nozzle guide vane endwall on the heat transfer distribution across an axisymmetric converging endwall. The axisymmetric converging endwall investigated was representative of that found on the shroud side of a first stage turbine nozzle section. The experiment was conducted at a nominal exit M of 0.85 and exit Re 1.5 x 10⁶ with an inlet turbulence intensity of 16%.
The experiment was conducted in a blowdown transonic linear cascade wind tunnel. Two different inlet configurations were investigated. The first configuration, Case I, was representative of a combustor exit aligned to the nozzle platform, with a gap located at the interface of the tow components. The second configuration, Case II, the endwall platform was offset in the span-wise direction to create a backward facing step at the inlet. This step is representative of a misalignment between the combustor exit and the NGV platform. An infrared camera was used to capture the temperature history on the endwall, from which the endwall heat transfer distribution was determined. A numerical study was also conducted by solving RANS equations using ANSYS Fluent v.15. The numerical results provided insight into the passage flow field which explained the observed heat transfer characteristics.
Case I showed the typical characteristics of transonic vane cascade flow, such as the separation line, saddle point, and horseshoe vortices. The presence of a gap at the combustor-nozzle interface facilitated the formation of a separated flow which propagated through the passage. This flow feature caused the passage vortex reattach to the SS vane at 0.44 x/C.
The addition of the platform misalignment in Case II caused the flow reattachment region to occur near the vane LE plane. The separated flow which formed at the inlet step, merged with the recirculation region on the endwall platform, forming two counter-rotating auxiliary vortices. These vortices significantly delayed migration of the passage vortex, causing it to reattach on the SS vane at 0.85 x/C.
These two flow features also had a significant effect on the endwall heat transfer characteristics. The heat transfer levels on the endwall platform, from -0.50 to +0.50 Cx relative to the vane LE, had an average increase of ~40%. However, downstream of the vane mid-passage, the heat transfer levels showed no appreciable heat transfer augmentation due to flow acceleration through the passage throat. / Master of Science
|
854 |
Parallel implementation and application of particle scale heat transfer in the Discrete Element MethodAmritkar, Amit Ravindra 25 July 2013 (has links)
Dense fluid-particulate systems are widely encountered in the pharmaceutical, energy, environmental and chemical processing industries. Prediction of the heat transfer characteristics of these systems is challenging. Use of a high fidelity Discrete Element Method (DEM) for particle scale simulations coupled to Computational Fluid Dynamics (CFD) requires large simulation times and limits application to small particulate systems. The overall goal of this research is to develop and implement parallelization techniques which can be applied to large systems with O(105- 106) particles to investigate particle scale heat transfer in rotary kiln and fluidized bed environments.
The strongly coupled CFD and DEM calculations are parallelized using the OpenMP paradigm which provides the flexibility needed for the multimodal parallelism encountered in fluid-particulate systems. The fluid calculation is parallelized using domain decomposition, whereas N-body decomposition is used for DEM. It is shown that OpenMP-CFD with the first touch policy, appropriate thread affinity and careful tuning scales as well as MPI up to 256 processors on a shared memory SGI Altix. To implement DEM in the OpenMP framework, ghost particle transfers between grid blocks, which consume a substantial amount of time in DEM, are eliminated by a suitable global mapping of the multi-block data structure. The global mapping together with enforcing perfect particle load balance across OpenMP threads results in computational times between 2-5 times faster than an equivalent MPI implementation.
Heat transfer studies are conducted in a rotary kiln as well as in a fluidized bed equipped with a single horizontal tube heat exchanger. Two cases, one with mono-disperse 2 mm particles rotating at 20 RPM and another with a poly-disperse distribution ranging from 1-2.8 mm and rotating at 1 RPM are investigated. It is shown that heat transfer to the mono-disperse 2 mm particles is dominated by convective heat transfer from the thermal boundary layer that forms on the heated surface of the kiln. In the second case, during the first 24 seconds, the heat transfer to the particles is dominated by conduction to the larger particles that settle at the bottom of the kiln. The results compare reasonably well with experiments. In the fluidized bed, the highly energetic transitional flow and thermal field in the vicinity of the tube surface and the limits placed on the grid size by the volume-averaged nature of the governing equations result in gross under prediction of the heat transfer coefficient at the tube surface. It is shown that the inclusion of a subgrid stress model and the application of a LES wall function (WMLES) at the tube surface improves the prediction to within ± 20% of the experimental measurements. / Ph. D.
|
855 |
Verification of Compressible and Incompressible Computational Fluid Dynamics Codes and Residual-based Mesh AdaptationChoudhary, Aniruddha 06 January 2015 (has links)
Code verification is the process of ensuring, to the degree possible, that there are no algorithm deficiencies and coding mistakes (bugs) in a scientific computing simulation. In this work, techniques are presented for performing code verification of boundary conditions commonly used in compressible and incompressible Computational Fluid Dynamics (CFD) codes. Using a compressible CFD code, this study assesses the subsonic inflow (isentropic and fixed-mass), subsonic outflow, supersonic outflow, no-slip wall (adiabatic and isothermal), and inviscid slip-wall. The use of simplified curved surfaces is proposed for easier generation of manufactured solutions during the verification of certain boundary conditions involving many constraints. To perform rigorous code verification, general grids with mixed cell types at the verified boundary are used. A novel approach is introduced to determine manufactured solutions for boundary condition verification when the velocity-field is constrained to be divergence-free during the simulation in an incompressible CFD code. Order of accuracy testing using the Method of Manufactured Solutions (MMS) is employed here for code verification of the major components of an open-source, multiphase flow code - MFIX. The presence of two-phase governing equations and a modified SIMPLE-based algorithm requiring divergence-free flows makes the selection of manufactured solutions more involved than for single-phase, compressible flows. Code verification is performed here on 2D and 3D, uniform and stretched meshes for incompressible, steady and unsteady, single-phase and two-phase flows using the two-fluid model of MFIX.
In a CFD simulation, truncation error (TE) is the difference between the continuous governing equation and its discrete approximation. Since TE can be shown to be the local source term for the discretization error, TE is proposed as the criterion for determining which regions of the computational mesh should be refined/coarsened. For mesh modification, an error equidistribution strategy to perform r-refinement (i.e., mesh node relocation) is employed. This technique is applied to 1D and 2D inviscid flow problems where the exact (i.e., analytic) solution is available. For mesh adaptation based upon TE, about an order of magnitude improvement in discretization error levels is observed when compared with the uniform mesh. / Ph. D.
|
856 |
High Resolution Measurements of the Mean Three-dimensional Flow Field in a Natural RiverPetrie, John E. 12 June 2013 (has links)
The flow velocity in a river is three-dimensional (3D), turbulent, and varies in time and space. Capturing this variability in field measurements to support studies of river processes has proven particularly challenging. While originally developed to measure discharge, boat-mounted acoustic Doppler current profilers (ADCP) are increasingly used in field studies to quantify flow features including mean velocity, boundary shear stress, and sediment motion. Two survey procedures are typically employed with an ADCP. Moving-vessel (MV) measurements provide spatially-rich velocity data while temporally-rich data are obtained with fixed-vessel (FV) procedures. Given the relative ease of MV measurements, recent work has focused on developing MV procedures that produce comparable results to FV measurements. At the present, results of this work are inconclusive. Additionally, there is a lack of reported data and procedures for FV measurements.
This work seeks to develop techniques to present 3D velocity data obtained in natural rivers in a unified framework. This framework is based on a stream-fitted coordinate system defined by the flow direction at a cross section and allows for 3D velocity to be decomposed into streamwise, spanwise, and vertical components. Procedures are developed to assure that the velocity profiles measured at fixed locations are (1) not negatively impacted by the inevitable motion of the ADCP, (2) statistically stationary, and (3) of sufficient record length to determine the mean velocity. The coordinate system allows time-averaged velocity from FV procedures to be compared with spatially-averaged velocity from MV vessels. Significant differences are found between the two survey procedures, particularly for secondary velocity components. Ultimately, integrating results of the two survey procedures leads to an improved representation of the mean flow field. The techniques are applied to data obtained on a study reach on the lower Roanoke River, located in eastern North Carolina. / Ph. D.
|
857 |
Ecohydrologic Indicators of Low-flow Habitat Availability in Eleven Virginia RiversHoffman, Kinsey H. 26 October 2015 (has links)
Increasing demand and competition for freshwater is threatening instream uses including ecosystem services and aquatic habitat. A standard method of evaluating impacts of alternative water management scenarios on instream habitat is Instream Flow Incremental Methodology (IFIM). The primary outputs of IFIM studies are: 1) habitat rating curves that relate habitat availability to streamflow for every species, lifestage, or recreational use modelled; and 2) habitat time series under alternative water management scenarios. We compiled 428 habitat rating curves from previous IFIM studies across 11 rivers in Virginia and tested the ability to reduce this number based on similarities in flow preferences and responses to flow alteration. Individual site-species combinations were reduced from 428 objects to four groups with similar seasonal habitat availability patterns using a hierarchical, agglomerative cluster analysis. A seasonal habitat availability (SHA) ratio was proposed as a future indicator of seasonal flow preferences. Four parameters calculated from the magnitude and shape of habitat rating curves were proposed as response metrics that indicate how a lifestage responds to flow alteration. Univariate and multivariate analyses of variance and post-hoc tests identified significantly different means for the SHA ratio, QP (F=63.2, p<2e-16) and SK (F=65.6, p<2e-16). A reduced number of instream flow users can simplify the incorporation of aquatic habitat assessment in statewide water resources management. / Master of Science
|
858 |
Continuum and discrete models for particle-based heat exchangers in thermal and thermochemical energy storageMishra, Ashreet 10 May 2024 (has links) (PDF)
Thermal energy storage (TES) systems based on renewable energy sources (concentrated solar, wind, and photovoltaic etc.) are crucial to reducing dependence on conventional energy generation systems and reducing renewable energy’s intermittent nature. TES can be utilized in conjunction with concentrated solar power (CSP) in particle-based power cycles where the particles can be charged (heat addition) using solar energy and then discharged (heat extraction) using particle-based heat exchangers (HX). Efficient particle based HXs are vital in coupling heat transfer fluid (HTF) from thermal receivers to power cycle working fluid (WF). Heat transfer enhancement is essential for adopting particle-based moving packed-bed heat exchangers (MPBHXs) in next-generation TES systems, as MPBHXs usually exhibit low particle bed-to-wall heat transfer coefficients and total heat transfer rate. This dissertation focuses on addressing the limitations of MPBHXs by computationally studying the heat transfer performance enhancement due to granular flows in metal foam-based MPBHXs and reactive flow-based MPBHXs. Comprehensive multidimensional, multiscale, and multiphysics models are developed to predict the TES/TCES (Thermochemical energy storage) performance accurately. First, the flow properties through metal foams are determined, followed by granular flow through metal foam-based particle-to-sCO2 HXs to predict the heat transfer enhancement. Then, granular flows with reactive and sensible heat-only particles are studied in particle-to-sCO2 HXs to predict the heat transfer enhancement, followed by the development of discrete element models (DEM) in inclined moving bed granular flows to study particle-scale heat and mass transfer. Overall, this study provides valuable insights into effective modeling of granular flows from continuum to discrete scales and improved design and operation of particle-based heat exchangers and thermochemical reactors.
|
859 |
Fondsparande och amorteringskrav: En studie av svenska hushålls allokering av sparformer / Fund savings and amortization requirements: A study of Swedish households' allocation of saving formsNorström, Pontus, Ahmed, Youakiem January 2024 (has links)
Studien undersöker om införandet av amorteringskravet och det skärpta amorteringskravet har påverkat hushållens allokering från finansiellt sparande till ett sparande i reala tillgångar, i detta fall bostäder. Studien använder sig av sekundärdata och har genom kvantitativa metoder analyserat fondflöden från 2013–2023. Tre regressionsmodeller framställs för att bedöma effekterna av amorteringskraven, dessa kompletteras även med tester för multikollinearitet och heteroskedasticitet för att säkerställa robusta resultat. Liknande studier skiljer sig åt i sina slutsatser där en studie konstaterar att amorteringskraven har minskat svenskars fondsparande. Samtidigt konstaterar en annan studie att ett amorteringskrav lett till en förmögenhetsökning. Livscykelhypotesen och mental bokföring är de centrala teorierna som används för att adekvat analysera resultaten av studien. Resultaten visar att det inte skett någon signifikant förändring i hushållens allokering av sparformer till följd av amorteringskraven. Det finns däremot indikationer som tyder på en ökning av totalt sparande. / The study examines how the introduction of the initial amortization requirement and the stricter amortization requirement have affected households’ allocation from financial savings to savings in real assets, in this case housing. The study uses secondary data and has analyzed fund flows from 2013–2023 through quantitative methods. Three regression models are produced to assess the effects of the amortization requirements, these are also complemented with tests for multicollinearity and heteroskedasticity to ensure robust results. Similar studies differ in their conclusion, where an earlier study states that the amortization requirements have reduced Swedes’ fund savings. At the same time another study state that the amortization requirements led to an increase in wealth. Central theories such as the life cycle hypothesis and mental accounting are used to adequately analyze the results of the study. The results show that there was no significant change in the households' allocation of saving forms as a result of the amortization requirements. However, there are indications of a potential increase in total savings.
|
860 |
Ending impunity : establishing the legitimacy of the International Criminal CourtMelvin, David J. 01 January 2008 (has links)
In 1998, the Rome Statute established the International Criminal Court (ICC) to end impunity for violators of international human rights law. As the ICC is opening criminal investigations for the first time in its existence, it is important to determine the legitimacy of the young institution in order to understand its importance in international politics and international legal precedence. These first cases can be used to illustrate that while some fears might be misplaced, others are sadly realized. Especially through the criminal investigation processes in Darfur, the ICC has acted responsibly and has not violated its founding principles or Sudan's sovereignty. Conversely, ICC intervention in Uganda has created a political situation that pits the prospect of peace against the pursuit of justice. If the ICC is able to prove that it is responsible in its judicial processes, it will likely become a legitimized institution. An increased role by the international community in ICC affairs would also bring a level of comfort and transparency that has not yet been realized. Furthermore, as individual states begin to use diplomatic means to enforce the norms of international human rights, the court might be used infrequently, and only when it is critical in the pursuit of justice. Despite the difficulties. faced by the ICC, it has the potential to gain legitimacy and become a recognizable player on the international political scene.
|
Page generated in 0.0333 seconds