• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 60
  • 29
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 5
  • 3
  • 1
  • 1
  • Tagged with
  • 120
  • 120
  • 120
  • 120
  • 22
  • 15
  • 14
  • 13
  • 13
  • 13
  • 13
  • 11
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Dynamics and numerical modeling of river plumes in lakes

Nekouee, Navid 20 May 2010 (has links)
Models of the fate and transport of river plumes and the bacteria they carry into lakes are developed. They are needed to enable informed decisions about beach closures to avoid economic losses, and to help design water intakes and operate combined sewer overflow schemes to obviate exposure of the public to potential pathogens. This study advances our understanding of river plumes dynamics in coastal waters by means of field studies and numerical techniques. Extensive field measurements were carried out in the swimming seasons of 2006 and 2007 on the Grand River plume as it enters Lake Michigan. They included simultaneous aerial photography, measurements of lake physical properties, the addition of artificial tracers to track the plume, and bacterial sampling. Our observed results show more flow classes than included in previous studies (e.g. CORMIX). Onshore wind can have a significant effect on the plume and whether it impacts the shoreline. A new classification scheme based on the relative magnitude of plume-crossflow length scale and Richardson number based on the wind speed is devised. Previous studies on lateral spreading are complemented with a new relationship in the near field. The plume thickness decreased rapidly with distance from the river mouth and a new non-dimensional relationship to predict thickness is developed. Empirical near field models for surface buoyant plumes are reviewed and a near field trajectory and dilution model for large aspect ratio surface discharge channels is devised. Bacterial reductions due to dilution were generally small (less than 10:1) up to 4.5 km from the river mouth. E. coli decay rates were significantly affected by solar radiation and ranged from 0.2 to 2.2 day-1 which were within the range of previous studies in Lake Michigan. Total coliform survived longer than E. coli suggesting different die-off mechanisms. Mathematical models of the bacterial transport are developed that employ a nested modeling scheme to represent the 3D hydrodynamic processes of surface river discharges in the Great Lakes. A particle tracking model is used that provides the capability to track a decaying tracer and better quantify mixing due to turbulent diffusion. Particle tracking models have considerable advantages over gradient diffusion models in simulating bacterial behavior nearshore that results in an improved representation of bacteria diffusion, decay and transport. Due to the complexity and wide variation of the time and length scale of the hydrodynamic and turbulent processes in the near field (where plume mixing is dominated by initial momentum and buoyancy) and far field (where plume mixing is dominated by ambient turbulence), a coupling technique is adapted. The far field random walk particle tracking model incorporates the empirical near field model. It simulates the transport, diffusion and decay of bacteria as discrete particles and employs the near field output as the source and transports the particles based on ambient currents predicted by the 3D hydrodynamic model. The coupled model improves dilution predictions in the near field. The new techniques advance our knowledge of the nearshore fate and transport of bacteria in the Great Lakes and can be ultimately applied to the NOAA Great Lakes Coastal Forecasting System to provide a reliable prediction tool for bacterial transport in recreational waters.
112

A new Lagrangian model for the dynamics and transport of river and shallow water flows

Devkota, Bishnu Hari January 2005 (has links)
This study presents a new Lagrangian model for predicting dynamics and transport in rivers and shallow water flows. A hydrostatic model is developed for the prediction of rivers and floodplain flow and lateral interactions between them. The model is extended to the Boussinesq weakly non-linear, non-hydrostatic model for the simulation of solitary waves and undular bores. A model for advection-diffusion transport of tracers in open channel flow is also presented. The simulation results are compared against an analytical solution and published laboratory data, field data and theoretical results. It is demonstrated that the Lagrangian moving grid eliminates numerical diffusion and oscillations; the model is dynamically adaptive, providing higher resolution under the wave by compressing the parcels (grid). It also allows flow over dry beds and moving boundaries to be handled efficiently. The hydrostatic model results have shown that the model accurately simulates wave propagation and non-linear steepening until wave breaking. The model is successfully applied to simulate flow and lateral interactions in a compound channel and flood wave movement in a natural river. The non-hydrostatic model has successfully reproduced the general features of solitary waves such as the balance between non-linearity and wave dispersion and non-linear interactions of two solitary waves by phase-shift. Also, the model successfully reproduced undular bores (high frequency short waves) from a long wave and the predicted maximum height of the leading wave agreed very well with the published results. It is shown that the simple second order accurate Lagrangian scheme efficiently simulates dispersive waves without any numerical diffusion. Lagrangian modeling of advection-diffusion transport of Gaussian tracer distributions, top hat tracer distributions and steep fronts (step function) in steady, uniform flow has provided exact results and has shown that the scheme allows the use of a large time step without any numerical diffusion and oscillations, including for the advection of steep fronts. The scheme can handle large Courant numbers (results are presented for Cr = 0 to 20) and the entire range of grid Peclet numbers from zero to infinity. The model is successfully applied to tracer transport due to flow induced by simple waves, solitary waves and undular bores
113

The prediction of flow through two-dimensional porous media

Terblanche, Luther 03 1900 (has links)
Thesis (MScEng (Mathematical Sciences. Applied Mathematics))--University of Stellenbosch, 2006. / When considering flow through porous media, different flow regimes may be identified. At very small Reynolds numbers the relation between the pressure gradient and the velocity of the fluid is linear. This flow regime ...
114

Analysis of Capillary Flow in Interior Corners : Perturbed Power Law Similarity Solutions

McCraney, Joshua Thomas 21 December 2015 (has links)
The design of fluid management systems requires accurate models for fluid transport. In the low gravity environment of space, gravity no longer dominates fluid displacement; instead capillary forces often govern flow. This thesis considers the redistribution of fluid along an interior corner. Following a rapid reduction of gravity, fluid advances along the corner measured by the column length z = L(t), which is governed by a nonlinear partial differential equation with dynamical boundary conditions. Three flow types are examined: capillary rise, spreading drop, and tapered corner. The spreading drop regime is shown to exhibit column length growth L ~ t2/5, where a closed form analytic solution exists. No analytic solution is available for the capillary rise problem. However, a perturbed power law similarity solution is pursued to approximate an analytic solution in the near neighborhood of the exact solution for the spreading drop. It is recovered that L ~ t1/2 for the capillary rise problem. The tapered corner problem is not analytically understood and hence its corresponding L is undocumented. Based on the slender corner geometry, it is natural to hypothesize the tapered corner column length initially behaves like the capillary rise regime, but after sufficient time has elapsed, it transitions into the spreading drop regime. This leads to a conjecture that its column length growth L is restricted to t2/5 < L < t1/2. To verify this conjecture an explicit finite difference numerical solution is developed for all three regimes. As will be shown, the finite difference scheme converges towards the analytic solutions for the spreading drop and capillary rise regimes. From this we assume the finite difference scheme is accurate for corner flows of similar geometries, and thus apply this scheme the more onerous criteria of the tapered corner. Numerical results support the conjectured L behavior for the tapered corner. Understanding the dynamics of such flows and responses to various geometries offers design advantages for spacecraft waste-management systems, fuel control, hydration containment, cryogenic flows, and a myriad of other fluid applications.
115

A laboratory study of localized boundary mixing in a rotating stratified fluid / Localized boundary mixing in a rotating stratified fluid

Wells, Judith R. (Judith Roberta) January 2003 (has links)
Thesis (Ph. D.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, and the Woods Hole Oceanographic Institution), 2003. / Includes bibliographical references (p. 145-148). / Oceanic observations indicate that abyssal mixing is localized in regions of rough topography. How locally mixed fluid interacts with the ambient fluid is an open question. Laboratory experiments explore the interaction of mechanically induced boundary mixing and an interior body of linearly stratified rotating fluid. Turbulence is generated by a vertically oscillating horizontal bar, located at middepth along the tank wall. The turbulence forms a region of mixed fluid which quickly reaches a steady state height and collapses into the interior. The mixed layer thickness ... is independent of the Coriolis frequency f. N is the buoyancy frequency, co is the bar frequency, and the constant, Y=1 cm, is empirically determined by bar mechanics. In initial experiments, the bar is exposed on three sides. Mixed fluid intrudes directly into the interior as a radial front of uniform height, rather than as a boundary current. Mixed fluid volume grows linearly with time ... The circulation patterns suggest a model of unmixed fluid being laterally entrained with velocity, e Nhm, into the sides of a turbulent zone with height hm and width Lf ... where Lf is an equilibrium scale associated with rotational control of bar-generated turbulence. In accord with the model, outflux is constant, independent of stratification and restricted by rotation ... Later experiments investigate the role of lateral entrainment by confining the sides of the mixing bar between two walls, forming a channel open to the basin at one end. A small percentage of exported fluid enters a boundary current, but the bulk forms a cyclonic circulation in front of the bar. As the recirculation region expands to fill the channel, it restricts horizontal entrainment into the turbulent zone. The flux of mixed fluid decays with time. / (cont.) ... The production of mixed fluid depends on the size of the mixing zone as well as on the balance between turbulence, rotation and stratification. As horizontal entrainment is shut down, longterm production of mixed fluid may be determined through much weaker vertical entrainment. Ultimately, the export of mixed fluid from the channel is restricted to the weak boundary current. / by Judith R. Wells. / Ph.D.
116

Multi-scale modelling of the microvasculature in the human cerebral cortex

El-Bouri, Wahbi K. January 2017 (has links)
Cerebrovascular diseases are by far the largest causes of death in the UK, as well as one of the leading causes of adult disability. The brain's healthy function depends on a steady supply of oxygen, delivered through the microvasculature. Cerebrovascular diseases, such as stroke and dementia, can interrupt the transport of blood (and hence oxygen) rapidly, or over a prolonged period of time. An interruption in flow can lead to ischaemia, with prolonged interruptions leading to tissue death and eventual brain damage. The microvasculature plays a key role in the transport of oxygen and nutrients to brain tissue; however, its role in diseases such as dementia is poorly understood, primarily due to the inability of current clinical imaging techniques to resolve microvessels, and due to the complexity of the underlying microvasculature. Therefore, in order to understand cerebrovascular diseases, it is necessary to be able to resolve and understand the microvasculature. In particular, generating large-scale models of the human microvasculature that can be linked back to contemporary clinical imaging is important in helping plug the current imaging gap that exists. A novel statistical model is proposed here that generates such large-scale models efficiently. Homogenization theory is used to generate a porous continuum capillary bed (characterised by its permeability) that allows for the efficient scaling up of the microvasculature. A novel order-based density-filling algorithm is then developed which generates morphologically accurate penetrating arterioles and venules, also demonstrating that the topology of the vessels only has a minor influence on CBF compared to diameter. Finally, the capillary bed and penetrating vessels are coupled into a large voxel-sized model of the microvasculature from which pressure and flux variations through the voxel can be analysed. A decoupling of the pressure and flux, as well as a layering of flow, was observed within the voxel, driven by the topology of the penetrating vessels. Micro-infarctions were also simulated, demonstrating the large local effects they have on the pressure and flux, whilst only causing a minor drop in CBF within the voxel.
117

Stochastic analysis of flow and transport in porous media

Vasylkivska, Veronika S. 06 September 2012 (has links)
Random fields are frequently used in computational simulations of real-life processes. In particular, in this work they are used in modeling of flow and transport in porous media. Porous media as they arise in geological formations are intrinsically deterministic but there is significant uncertainty involved in determination of their properties such as permeability, porosity and diffusivity. In many situations description of properties of the porous media is aided by a limited number of observations at fixed points. These observations constrain the randomness of the field and lead to conditional simulations. In this work we propose a method of simulating the random fields which respect the observed data. An advantage of our method is that in the case that additional data becomes available it can be easily incorporated into subsequent representations. The proposed method is based on infinite series representations of random fields. We provide truncation error estimates which bound the discrepancy between the truncated series and the random field. We additionally provide the expansions for some processes that have not yet appeared in the literature. There are several approaches to efficient numerical computations for partial differential equations with random parameters. In this work we compare the solutions of flow and transport equations obtained by conditional simulations with Monte Carlo (MC) and stochastic collocation (SC) methods. Due to its simplicity MC method is one of the most popular methods used for the solution of stochastic equations. However, it is computationally expensive. The SC method is functionally similar to the MC method but it provides the faster convergence of the statistical moments of the solutions through the use of the carefully chosen collocation points at which the flow and transport equations are solved. We show that for both methods the conditioning on measurements helps to reduce the uncertainty of the solutions of the flow and transport equations. This especially holds in the neighborhood of the conditioning points. Conditioning reduces the variances of solutions helping to quantify the uncertainty in the output of the flow and transport equations. / Graduation date: 2013
118

Development of numerical code for the study of marangoni convection

Melnikov, Denis 14 May 2004 (has links)
A numerical code for solving the time-dependent incompressible 3D Navier-Stokes equations with finite volumes on overlapping staggered grids in cylindrical and rectangular geometry is developed. In the code, written in FORTRAN, the momentum equation for the velocity is solved by projection method and Poisson equation for the pressure is solved by ADI implicit method in two directions combined with discrete fast Fourier transform in the third direction. A special technique for overcoming the singularity on the cylinder's axis is developed. This code, taking into account dependence upon temperature of the viscosity, density and surface tension of the liquid, is used to study the fluid motion in a cylinder with free cylindrical surface (under normal and zero-gravity conditions); and in a rectangular closed cell with a source of thermocapillary convection (bubble inside attached to one of the cell's faces). They are significant problems in crystal growth and in general experiments in fluid dynamics respectively. Nevertheless, the main study is dedicated to the liquid bridge problem.<p><p>The development of thermocapillary convection inside a cylindrical liquid bridge is investigated by using a direct numerical simulation of the 3D, time-dependent problem for a wide range of Prandtl numbers, Pr = 0.01 - 108. For Pr > 0.08 (e.g. silicon oils), above the critical value of temperature difference between the supporting disks, two counter propagating hydrothermal waves bifurcate from the 2D steady state. The existence of standing and traveling waves is discussed. The dependence of viscosity upon temperature is taken into account. For Pr = 4, 0-g conditions, and for Pr = 18.8, 1-g case with unit aspect ratio an investigation of the onset of chaos was numerically carried out. <p><p>For a Pr = 108 liquid bridge under terrestrial conditions ,the appearance and the development of thermoconvective oscillatory flows were investigated for different ambient conditions around the free surface.<p><p>Transition from 2D thermoconvective steady flow to a 3D flow is considered for low-Prandtl fluids (Pr = 0.01) in a liquid bridge with a non-cylindrical free surface. For Pr < 0.08 (e.g. liquid metals), in supercritical region of parameters 3D but non-oscillatory convective flow is observed. The computer program developed for this simulation transforms the original non-rectangular physical domain into a rectangular computational domain.<p><p>A study of how presence of a bubble in experimental rectangular cell influences the convective flow when carrying out microgravity experiments. As a model, a real experiment called TRAMP is numerically simulated. The obtained results were very different from what was expected. First, because of residual gravity taking place on board any spacecraft; second, due to presence of a bubble having appeared on the experimental cell's wall. Real data obtained from experimental observations were taken for the calculations.<p> / Doctorat en sciences appliquées / info:eu-repo/semantics/nonPublished
119

Mechanisms of axis-switching and saddle-back velocity profile in laminar and turbulent rectangular jets

Chen, Nan 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / We numerically investigate the underlying physics of two peculiar phenomena, which are axis-switching and saddle-back velocity profile, in both laminar and turbulent rectangular jets using lattice Boltzmann method (LBM). Previously developed computation protocols based on single-relaxation-time (SRT) and multiple-relaxation-time (MRT) lattice Boltzmann equations are utilized to perform direct numerical simulation (DNS) and large eddy simulation (LES) respectively. In the first study, we systematically study the axis-switching behavior in low aspect-ratio (AR), defined as the ratio of width over height, laminar rectangular jets with <italic>AR=1</italic> (square jet), 1.5, 2, 2.5, and 3. Focuses are on various flow properties on transverse planes downstream to investigate the correlation between the streamwise velocity and secondary flow. Three distinct regions of jet development are identified in all the five jets. The <italic>45&deg</italic> and <italic>90&deg</italic> axis-switching occur in characteristic decay (CD) region consecutively at the early and late stage. The half-width contour (HWC) reveals that <italic>45&deg</italic> axis-switching is mainly contributed by the corner effect, whereas the aspect-ratio (elliptic) feature affects the shape of the jet when <italic>45&deg</italic> axis-switching occurs. The close examinations of flow pattern and vorticity contour, as well as the correlation between streamwise velocity and vorticity, indicate that <italic>90&deg</italic> axis-switching results from boundary effect. Specific flow patterns for <italic>45&deg</italic> and <italic>90&deg</italic> axis-switching reveal the mechanism of the two types of axis-switching respectively. In the second study we develop an algorithm to generate a turbulent velocity field for the boundary condition at jet inlet. The turbulent velocity field satisfies incompressible continuity equation with prescribed energy spectrum in wave space. Application study of the turbulent velocity profile is on two turbulent jets with <italic>Re=25900</italic>. In the jets with <italic>AR=1.5</italic>, axis-switching phenomenon driven by the turbulent inlet velocity is more profound and in better agreement with experimental examination over the laminar counterpart. Characteristic jet development driven by both laminar and turbulent inlet velocity profile in square jet (<italic>AR=1</italic>) is also examined. Overall agreement of selected jet features is good, while quantitative match for the turbulence intensity profiles is yet to be obtained in future study. In the third study, we analyze the saddle-back velocity profile phenomenon in turbulent rectangular jets with AR ranging from 2 to 6 driven by the developed turbulent inlet velocity profiles with different turbulence intensity (<italic>I</italic>). Saddle-back velocity profile is observed in all jets. It has been noted that the saddle-back's peak velocities are resulted from the local minimum mixing intensity. Peak-center difference <italic>&Delta<sub>pc</sub></italic> and profound saddle-back (PSB) range are defined to quantify the saddle-back level and the effects of AR and <italic>I</italic> on saddle-back profile. It is found that saddle-back is more profound with larger AR or slimmer rectangular jets, while its relation with <italic>I</italic> is to be further determined.
120

Coupled thermal-fluid analysis with flowpath-cavity interaction in a gas turbine engine

Fitzpatrick, John Nathan 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / This study seeks to improve the understanding of inlet conditions of a large rotor-stator cavity in a turbofan engine, often referred to as the drive cone cavity (DCC). The inlet flow is better understood through a higher fidelity computational fluid dynamics (CFD) modeling of the inlet to the cavity, and a coupled finite element (FE) thermal to CFD fluid analysis of the cavity in order to accurately predict engine component temperatures. Accurately predicting temperature distribution in the cavity is important because temperatures directly affect the material properties including Young's modulus, yield strength, fatigue strength, creep properties. All of these properties directly affect the life of critical engine components. In addition, temperatures cause thermal expansion which changes clearances and in turn affects engine efficiency. The DCC is fed from the last stage of the high pressure compressor. One of its primary functions is to purge the air over the rotor wall to prevent it from overheating. Aero-thermal conditions within the DCC cavity are particularly challenging to predict due to the complex air flow and high heat transfer in the rotating component. Thus, in order to accurately predict metal temperatures a two-way coupled CFD-FE analysis is needed. Historically, when the cavity airflow is modeled for engine design purposes, the inlet condition has been over-simplified for the CFD analysis which impacts the results, particularly in the region around the compressor disc rim. The inlet is typically simplified by circumferentially averaging the velocity field at the inlet to the cavity which removes the effect of pressure wakes from the upstream rotor blades. The way in which these non-axisymmetric flow characteristics affect metal temperatures is not well understood. In addition, a constant air temperature scaled from a previous analysis is used as the simplified cavity inlet air temperature. Therefore, the objectives of this study are: (a) model the DCC cavity with a more physically representative inlet condition while coupling the solid thermal analysis and compressible air flow analysis that includes the fluid velocity, pressure, and temperature fields; (b) run a coupled analysis whose boundary conditions come from computational models, rather than thermocouple data; (c) validate the model using available experimental data; and (d) based on the validation, determine if the model can be used to predict air inlet and metal temperatures for new engine geometries. Verification with experimental results showed that the coupled analysis with the 3D no-bolt CFD model with predictive boundary conditions, over-predicted the HP6 offtake temperature by 16k. The maximum error was an over-prediction of 50k while the average error was 17k. The predictive model with 3D bolts also predicted cavity temperatures with an average error of 17k. For the two CFD models with predicted boundary conditions, the case without bolts performed better than the case with bolts. This is due to the flow errors caused by placing stationary bolts in a rotating reference frame. Therefore it is recommended that this type of analysis only be attempted for drive cone cavities with no bolts or shielded bolts.

Page generated in 0.1513 seconds