Spelling suggestions: "subject:"fluidizedbed."" "subject:"fluidized.""
141 |
Experimental verification of the simplified scaling laws for bubbling fluidized beds at large scalesSanderson, Philip John, 1974- January 2002 (has links)
Abstract not available
|
142 |
Numerical modelling of multi-particle flows in bubbling gas-solid fluidised bedsBell, Robyn Anne, Robyn.Bell@csiro.au January 2000 (has links)
In Victoria, Australia, brown coal is utilised as a major source of energy for the power generation industry. Victorian and South Australian brown coals have a very high moisture content and therefore, the efficiencies of power generation in traditional pulverised fuel fired furnaces are low. Fluidised beds offer a number of advantages over conventional furnaces, leading to improvements in efficiency and environmental impact. A disadvantage with implementing fluidised bed technology is the issue of scale-up. Fluidised bed behaviour can alter significantly with changes in scale, because of their strong dependence on the bed hydrodynamics. Hence, there is a need to accurately model bed behaviour to ensure that the effect of changes in scale are well understood and will not become costly and time consuming.
Computational Fluid Dynamics (CFD) techniques can be applied to fluidised bed systems to gain a better understanding of the hydrodynamic behaviour involved. In the past, numerical models have considered only single particle sizes due to the added complexity of interaction between particles of differing sizes and densities. Industrial fluidised beds typically contain more than one particle size and density, therefore there is a need to develop a numerical model which takes this into account. The aim of this thesis is to develop and validate CFD techniques for modelling the behavior of a gas-solid fluidised bed containing more than one particle size and density.
To provide validation data for the numerical model, physical experiments are undertaken on a small two-dimensional bubbling gas-solid fluidised bed. Mixing and segregation behaviour of different materials are investigated. The experiments demonstrate that whilst only a small proportion of the bed consists of different size/density particles, significant changes in bed behaviour are apparent. Changes in bubble rise velocity, bubble size and bubble shape are observed.
A number of constitutive equations must be included in the numerical model, including relationships for the momentum transfer between various phases and solids pressure. Different combinations of these constitutive equations are investigated. A new equation for particle-particle interactions is derived and included in a CFD model. The CFD model is validated against both data in the literature and physical experiments. From the validation studies, an optimum equation set is identified. This optimum equation set produces numerical results that closely resemble experimental bed behaviour, thus bringing the goal of solving scale-up problems one step closer. The use of this type of CFD model will ultimately result in timely and cost effective solutions for both the power generation and chemical processing industries.
|
143 |
Sorption-enhanced steam methane reforming in fluidized bed reactorsJohnsen, Kim January 2006 (has links)
<p>Hydrogen is considered to be an important potential energy carrier; however, its advantages are unlikely to be realized unless efficient means can be found to produce it without generation of CO<sub>2</sub>. Sorption-enhanced steam methane reforming (SE-SMR) represent a novel, energy-efficient hydrogen production route with <i>in situ</i><b> </b>CO<sub>2</sub> capture, shifting the reforming and water gas shift reactions beyond their conventional thermodynamic limits.</p><p>The use of fluidized bed reactors for SE-SMR has been investigated. Arctic dolomite, a calcium-based natural sorbent, was chosen as the primary CO<sub>2</sub>-acceptor in this study due to high absorption capacity, relatively high reaction rate and low cost. An experimental investigation was conducted in a bubbling fluidized bed reactor of diameter 0.1 m, which was operated cyclically and batchwise, alternating between reforming/carbonation conditions and higher-temperature calcination conditions. Hydrogen concentrations of >98 mole% on a dry basis were reached at 600°C and 1 atm, for superficial gas velocities in the range of ~0.03-0.1 m/s. Multiple reforming-regeneration cycles showed that the hydrogen concentration remained at ~98 mole% after four cycles. The total production time was reduced with an increasing number of cycles due to loss of CO<sub>2 </sub>-uptake capacity of the dolomite, but the reaction rates of steam reforming and carbonation seemed to be unaffected for the conditions investigated.</p><p>A modified shrinking core model was applied for deriving carbonation kinetics of Arctic dolomite, using experimental data from a novel thermo gravimetric reactor. An apparent activation energy of 32.6 kJ/mole was found from parameter fitting, which is in good agreement with previous reported results. The derived rate expression was able to predict experimental conversion up to ~30% very well, whereas the prediction of higher conversion levels was poorer. However, the residence time of sorbent in a continuous reformer-calciner system is likely to be rather low, so that only a fraction of the sorbent is utilized, highlighting the importance of the carbonation model at lower conversions.</p><p>A dual fluidized bed reactor for the SE-SMR system was modeled by using a simple two-phase hydrodynamic model, the experimentally derived carbonation kinetics and literature values for the kinetics of steam reforming and water gas shift reactions. The model delineates important features of the process. Hydrogen concentrations of >98 mole% were predicted for temperatures ~600°C and a superficial gas velocity of 0.1 m/s. The reformer temperature should not be lower than 540°C or greater than 630°C for carbon capture efficiencies to exceed 90%. Operating at relatively high solid circulation rates to reduce the need for fresh sorbent, is predicted to give higher system efficiencies than for the case where fresh solid is added. This finding is attributed to the additional energy required to decompose both CaCO<sub>3</sub> and MgCO<sub>3</sub> in fresh dolomite. Moreover, adding fresh sorbent is likely to result in catalyst loss in the purge stream, requiring sorbents with lifetimes comparable to those of the catalyst.</p><p>Thermo gravimetric analysis (TGA) was used to study the reversible CO<sub>2</sub>-uptake of sorbents. In general, the multi-cycle capacity of the dolomite was found rather poor. Therefore, synthetic sorbents that maintain their capacities upon multiple reforming-calcination cycles were investigated. A low-temperature liquid phase co-precipitation method was used for synthesis of Li<sub>2</sub>ZrO<sub>3</sub> and Na<sub>2</sub>ZrO<sub>3</sub>. Li<sub>2</sub>ZrO<sub>3</sub> showed a superior multi-cycle capacity compared to Arctic dolomite in TGA, but the rate of reaction in diluted CO<sub>2</sub> atmospheres was very slow. The synthesized Na<sub>2</sub>ZrO<sub>3</sub> proved to have both fast carbonation kinetics and stable multi-cycle performance. However, regeneration in the presence of carbon dioxide was not easily accomplished.</p><p>The findings of this thesis suggest that the bubbling fluidized bed reactor is an attractive reactor configuration for SE-SMR. Low gas throughput is the major disadvantage for this configuration, and operation in the fast fluidization regime is most likely to be preferred on an industrial scale of the process. Future work should focus on developing sorbents and catalysts that are suited for high velocity operation, with respect to reactivity and mechanical strength.</p>
|
144 |
Experimental and modeling study of a cold-flow fluid catalytic cracking unit stripperWiens, Jason Samuel 22 June 2010
Many particulate processes are preferably implemented in circulating fluidized beds (CFB) over traditional low-velocity fluidization to take advantage of the many benefits of circulating systems. Fluid catalytic cracking (FCC) is one of the most successfully applied processes in CFB technology, with more than 350 FCC units in operation worldwide. Despite its extensive use, an understanding of the complex behaviour of these units is incomplete.<p>
A theoretical and experimental evaluation of the fluidization behaviour was conducted in the CFB riser, standpipe, and stripper. Initially, an extension of the existing CFB in the Fluidization Laboratory of Saskatchewan was designed. The experimental program conducted in this study included an examination of the solids flow behaviour in the riser, interstitial gas velocity in the downcomer, and stripping efficiency measurements. The hydrodynamic behaviour of the stripper was modeled using Multiphase Flow with Interphase eXchanges (MFIX) CFD code.<p>
The solids flow behaviour in the bottom zone of a high-density riser was investigated by measuring the local upwards and downwards solids flux. Solids circulation rates between 125 and 243 kg/(m2⋅s) were evaluated at a constant riser superficial gas velocity of 5.3 m/s. The effect of the riser superficial gas velocity of the local upflow at the riser centerline was also conducted at a solids circulation rate of 187 kg/(m2⋅s). The results show that there is little variation in the local net solids flux at radial locations between 0.00 ¡Ü r/R ¡Ü 0.87. The results indicate that a sharp regime change from a typical parabolic solids flux profile to this more radially uniform solids flux profile occurs at a gas velocity between 4.8 and 4.9 m/s.<p>
To quantify stripping efficiency, the underflow of an injected tracer into the standpipe must be known. Quantification of the underflow into the standpipe requires knowledge of two main variables: the interstitial gas velocity and the tracer gas concentration profiles in the standpipe. Stripping efficiency was determined for stripper solids circulation rates of 44, 60, and 74 kg/(m2⋅s) and gas velocities of 0.1, 0.2, and 0.3 m/s. For most conditions studied, the interstitial gas velocity profile was found to be flat for both fluidized and packed bed flow. The stripping efficiency was found to be sensitive to the operating conditions. The highest efficiency is attained at low solids circulation rates and high stripping gas velocities.<p>
In the numeric study, stripper hydrodynamics were examined for similar operating conditions as those used in the experimental program. Due to an improved radial distribution of gas and decreasing bubble rise velocity, mass transfer is deemed most intense as bubbles crest above the baffles into the interspace between disc and donut baffles. Stripping efficiency is thought to improve with increasing gas velocity due to an increased bubbling frequency. Stripping efficiency is thought to decrease with increasing solids circulation rates due to a lower emulsion-cloud gas interchange coefficient and a decreased residence time of the emulsion in the stripper.
|
145 |
Experimental and modeling study of a cold-flow fluid catalytic cracking unit stripperWiens, Jason Samuel 22 June 2010 (has links)
Many particulate processes are preferably implemented in circulating fluidized beds (CFB) over traditional low-velocity fluidization to take advantage of the many benefits of circulating systems. Fluid catalytic cracking (FCC) is one of the most successfully applied processes in CFB technology, with more than 350 FCC units in operation worldwide. Despite its extensive use, an understanding of the complex behaviour of these units is incomplete.<p>
A theoretical and experimental evaluation of the fluidization behaviour was conducted in the CFB riser, standpipe, and stripper. Initially, an extension of the existing CFB in the Fluidization Laboratory of Saskatchewan was designed. The experimental program conducted in this study included an examination of the solids flow behaviour in the riser, interstitial gas velocity in the downcomer, and stripping efficiency measurements. The hydrodynamic behaviour of the stripper was modeled using Multiphase Flow with Interphase eXchanges (MFIX) CFD code.<p>
The solids flow behaviour in the bottom zone of a high-density riser was investigated by measuring the local upwards and downwards solids flux. Solids circulation rates between 125 and 243 kg/(m2⋅s) were evaluated at a constant riser superficial gas velocity of 5.3 m/s. The effect of the riser superficial gas velocity of the local upflow at the riser centerline was also conducted at a solids circulation rate of 187 kg/(m2⋅s). The results show that there is little variation in the local net solids flux at radial locations between 0.00 ¡Ü r/R ¡Ü 0.87. The results indicate that a sharp regime change from a typical parabolic solids flux profile to this more radially uniform solids flux profile occurs at a gas velocity between 4.8 and 4.9 m/s.<p>
To quantify stripping efficiency, the underflow of an injected tracer into the standpipe must be known. Quantification of the underflow into the standpipe requires knowledge of two main variables: the interstitial gas velocity and the tracer gas concentration profiles in the standpipe. Stripping efficiency was determined for stripper solids circulation rates of 44, 60, and 74 kg/(m2⋅s) and gas velocities of 0.1, 0.2, and 0.3 m/s. For most conditions studied, the interstitial gas velocity profile was found to be flat for both fluidized and packed bed flow. The stripping efficiency was found to be sensitive to the operating conditions. The highest efficiency is attained at low solids circulation rates and high stripping gas velocities.<p>
In the numeric study, stripper hydrodynamics were examined for similar operating conditions as those used in the experimental program. Due to an improved radial distribution of gas and decreasing bubble rise velocity, mass transfer is deemed most intense as bubbles crest above the baffles into the interspace between disc and donut baffles. Stripping efficiency is thought to improve with increasing gas velocity due to an increased bubbling frequency. Stripping efficiency is thought to decrease with increasing solids circulation rates due to a lower emulsion-cloud gas interchange coefficient and a decreased residence time of the emulsion in the stripper.
|
146 |
Utilization Of Fly Ash From Fluidized Bed Combustion Of A Turkish Lignite In Production Of Blended CementsKurkcu, Mehmet 01 August 2006 (has links) (PDF)
Fly ashes generated from fluidized bed combustion of low calorific value, high ash content Turkish lignites are characterized by high content of acidic oxides, such as SiO2, Al2O3 and Fe2O3, varying in the range 50-70%. However, there exists no study for the investigation of the possibility of using these ashes as concrete admixture.
Therefore, in this study, characterization of fly ashes from fluidized bed combustion of a Turkish lignite and evaluation of these fly ashes as a substitute for Portland cement in production of pastes and mortars were carried out. The samples were subjected to chemical, physical, mineralogical and morphological analyses. Results of chemical and physical analyses of three fly ash samples show that they satisfy the requirements of EN 197-1, EN 450 and ASTM C 618, except for CaO and SO3, owing to high content of acidic oxides of these ashes contrary to majority of FBC fly ashes reported in the literature. In addition to characterization studies, water requirement, compressive strength, setting time and soundness tests were also performed for 10%, 20% and 30% fly ash-cement blends and the reference cement. Results of these tests reveal that the blends meet compressive strength, setting time and soundness requirements of ASTM C 595 without any pre-hydration treatment, and that fly ashes from fluidized bed combustion of Turkish lignites have significant potential for utilization as an admixture in manufacture of blended cements.
|
147 |
Simulation Of Circulating Fluidized Bed CombustorsGogebakan, Yusuf 01 September 2006 (has links) (PDF)
A dynamic mathematical model for simulation of atmospheric circulating fluidized bed combustors has been developed on the basis of first principles and empirical correlations. The model accounts for dense and dilute zone hydrodynamics, volatiles release and combustion, char particles combustion and their size distribution, and heat transfer from/to gas, particles, waterwalls and refractory.
Inputs to the model include configuration and dimensions of the combustor and its internals, air and coal flows, coal analysis, all solid and gas properties, inlet temperatures of air, cooling water, and feed solids, size distribution of feed solids / whereas outputs include transient values of combustor temperatures, gas concentrations, char and inert hold-ups and their size distributions.
The solution procedure employs method of lines approach for the governing non-linear partial differential equations and combined bisection and secant rule for non-linear algebraic equations. The initial conditions required for the model are provided from the simultaneous solution of governing equations of dynamic model with all temporal derivatives set to zero. By setting all temporal derivatives to zero, model can also be utilized for steady state performance prediction.
In order to assess the validity and predictive accuracy of the model, it was applied to the prediction of the steady state behavior of Technical University of Nova Scotia 0.3 MWt CFBC Test Rig and predictions were compared with measurements taken on the same rig. Comparison of model predictions at steady state conditions revealed that the predictions of the model are physically correct and agree well with the measurements and the model is successful in qualitatively and quantitatively simulating the processes taking place in a circulating fluidized bed combustor.
|
148 |
Co-firing Biomass With Coal In Bubbling Fluidized Bed CombustorsGogebakan, Zuhal 01 June 2007 (has links) (PDF)
Co-firing of biomass with coal in fluidized bed combustors is a promising alternative which leads to environmentally friendly use of coal by reducing emissions and provides utilization of biomass residues. Therefore, effect of biomass share on gaseous pollutant emissions from fluidized bed co-firing of various biomass fuels with high calorific value coals have extensively been investigated to date. However, effect of co-firing of olive residue, hazelnut shell and cotton residue with low calorific value lignites having high ash and sulfur contents has not been studied in bubbling fluidized bed combustors to date.
In this thesis study, co-firing of typical Turkish lignite with olive residue, hazelnut shell and cotton residue in 0.3 MWt METU Atmospheric Bubbling Fluidized Bed Combustion (ABFBC) Test Rig was investigated in terms of combustion and emission performance and ash behavior of different fuel blends.
The results reveal that co-firing of olive residue, hazelnut shell and cotton residue with lignite increases the combustion efficiency and freeboard temperatures compared to those of lignite firing with limestone addition only. O2 and CO2 emissions are not found sensitive to increase in olive residue, hazelnut shell and cotton residue share in fuel blend. Co-firing lowers SO2 emissions considerably while increasing CO emissions. Co-firing of olive residue and hazelnut shell has no significant influence on NO emissions, however, reduces N2O emissions. Co-firing cotton residue results in higher NO and N2O emissions. Regarding to major, minor and trace elements partitioning, co-firing lignite with biomasses under consideration shifts the partitioning of these elements from bottom ash to fly ash. No chlorine is detected in both EDX and XRD analyses of the ash deposits. In conclusion, olive residue, hazelnut shell and cotton residue can easily be co-fired with high ash and sulfur containing lignite without agglomeration and fouling problems.
|
149 |
Utilization Of Fluidized Bed Combustion Ashes As Raw Material In The Production Of A Special CementSoner, Ilker 01 June 2009 (has links) (PDF)
Fluidized bed combustion (FBC) ashes containing significant amount of free CaO and CaSO4 in addition to valuable inorganic acidic oxide ingredients such as SiO2, Fe2O3 and Al2O3 can be utilized as potential raw materials in the production of nonexpansive belite-rich calcium sulfoaluminate cement which is one of the special cement type of sulfoaluminate-belite cements having performance characteristics similar to those of ordinary portland cement besides lower energy requirements and
CO2 emissions during manufacturing. Therefore, in this thesis study, possibility of producing non-expansive belite-rich
calcium sulfoaluminate cement by adding FBC ashes in various proportions to the raw meal was investigated. For this purpose, a raw meal composed a mixture of limestone, bauxite, gypsum together with 10 wt % bottom ash and 15 wt % baghouse filter ash was prepared. It was sintered in a laboratory scale muffle furnace at temperatures of 1200, 1250 and 1300 ° / C for various holding times. The results of chemical and mineralogical analysis as well as microscopic examination reveal that FBC ashes have the potential to be used in the raw meal due to the presence of
characteristic mineral phases of this type of cements, i.e. yeelimite, larnite, ferrite and anhydrite, in the sample obtained at optimum sintering temperature of 1250 ° / C for 60 min.
|
150 |
Simulation Of Circulating Fluidized Bed Combustors Firing Indigenous LigniteOzkan, Mert 01 November 2010 (has links) (PDF)
A comprehensive model, previously developed for a rectangular parallelepiped shaped 0.3 MWt circulating fluidized bed combustor (CFBC) fired with high calorific value coal burning in sand and validated against experimental data is adapted to cylindrical configuration and is extended to incorporate NOx formation and reduction reactions and pressure drops around cyclone, downcomer and loop seal. Its predictive accuracy is tested by applying it to the simulation of Middle East Technical University (METU) 150 kWt CFBC burning low calorific value indigenous lignite with high Volatile Matter/Fixed Carbon (VM/FC) ratio in its own ash and comparing its predictions with measurements. Favorable comparisons are obtained between the predicted and measured temperatures, pressure profiles and emissions of gaseous species. Results reveal that predictive accuracy in pressure profile strongly depends on the correlation utilized for entrainment in dilute zone and that accuracy in NO emission requires data on
partitioning of coal nitrogen into char-N and volatile-N and is affected significantly by dilute zone oxygen content.
|
Page generated in 0.0309 seconds