Spelling suggestions: "subject:"flussnetzwerke"" "subject:"flussnetzwerk""
1 |
Perturbation analysis and numerical discretisation of hyperbolic partial differential algebraic equations describing flow networksHuck, Christoph 05 December 2018 (has links)
Diese Arbeit beschäftigt sich mit verschiedenen mathematischen Fragestellungen hinsichtlich der Modellierung, Analysis und numerischen Simulation von Gasnetzen. Hierbei liegt der Fokus auf der mathematischen Handhabung von partiellen differential-algebraischen Gleichungen, die mit algebraischen Gleichungen gekoppelt sind. Diese bieten einen einfachen Zugang hinsichtlich der Modellierung von dynamischen Strukturen auf Netzen Somit sind sie insbesondere für Gasnetze geeignet, denen im Zuge der steigenden Bedeutung von erneuerbaren Energien ein gestiegenes Interesse seitens der Öffentlichkeit, Politik und Wissenschaft entgegen gebracht wird.
Wir führen zunächst die gängigsten Elemente, die in Gasnetzen benötigt werden ein und formulieren zwei PDAE-Klassen für solche Netze: Eine für reine Rohrnetze, und eine, die zusätzliche Elemente wie Verdichter und Widerstände beinhaltet. Des Weiteren untersuchen wir die Sensitivität der Lösung der Rohrnetz-PDAE hinsichtlich Störungen. Dabei berücksichtigen wir Störungen, die nicht nur den dynamischen Teil der PDAE beeinflussen, sondern auch Störungen in den algebraischen Gleichungen und weisen Stabilitätseigenschaften für die Lösung der PDAE nach.
Darüber hinaus beschäftigen wir uns mit einer neu entwickelten, an die Netztopologie angepassten Ortsdiskretisierung, welche die Stabilitätseigenschaften der PDAE auf DAE Systeme überträgt. Des Weiteren zeigen wir, wie sich die Gasnetz-DAE zu einer gewöhnlichen Differentialgleichung, welche die inhärente Dynamik der DAE widerspiegelt entkoppeln lässt. Dieses entkoppelte System kann darüber hinaus direkt aus den Topologie- und Elementinformationen des Netzes aufgestellt werden. Abschließend demonstrieren wir die Ergebnisse an Benchmark-Gasnetzen. Dabei vergleichen wir sowohl die entkoppelte Differentialgleichung mit dem ursprünglichen DAE System, zeigen aber auch, welche Vorteile die an die Netztopologie angepasste Ortsdiskretisierung gegenüber existierenden Verfahren besitzt. / This thesis addresses several aspects regarding modelling, analysis and numerical simulation of gas networks. Hereby, our focus lies on (partial) differential-algebraic equations, thus systems of partial and ordinary differential equations which are coupled by algebraic equations. These coupled systems allow an easy approach towards the modelling of dynamic structures on networks. Therefore, they are well suited for gas networks, which have gained a rise of attention in society, politics and science due to the focus towards renewable energies.
We give an introduction towards gas network modelling that includes the most common elements that also appear in real gas networks and present two PDAE systems: One for pipe networks and one that includes additional elements like resistors and compressors. Furthermore, we investigate the impact of perturbations onto the pipe network PDAE, where we explicitly allow perturbations to affect the system in the differential as well as in the algebraic components. We conclude that the solution of the PDAE possesses stability properties.
In addition, this thesis introduces a new spatial discretisation that is adapted to the net- work topology. This topology-adapted semi-discretisation results in a DAE which possesses the same perturbation behaviour as the space continuous PDAE. Furthermore, we present a topology based decoupling procedure that allows to reformulate the DAE as an ordinary differential equation (ODE), which represents the inherent dynamics of the DAE system. This ODE, together with a decoupled set of algebraic equations, can be derived from the topology and element information directly. We conclude by demonstrating the established results for several benchmark networks. This includes a comparison of numerical solutions for the decoupled ODE and the DAE system. In addition we present the advantages of the topology-adapted spatial discretisation over existing well established methods.
|
Page generated in 0.0237 seconds