• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 1
  • Tagged with
  • 13
  • 13
  • 13
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Vaildation of nonlinear FE-simulation for design improvement

Yan, Charlotte 26 June 2013 (has links) (PDF)
The aim of the project is to develop a model, which is going to be used for mass reduction of a standard profile of aluminium seat rails in Aircraft structure. Using nonlinear analysis including plasticity and material failure laws the effect of changes in geometry vs. ultimate load is analysed (ABAQUS 6.11). First, the non-linear model used is validated with experimental testing: Boundary conditions and material properties are adjusted based on load displacement curves, strain gauges information and failure patterns. Less than 1% deviation is achieved between simulation and testing. An inclusion of material imperfection led to a 5% improvement of the results. Using the validated algorithm, a mass reduction is performed via geometry variation. / Ziel der Studie ist es ein adäquates Simulationsmodell zu entwickeln, welches zur Gewichtsreduzierung einer Standardprofil Aluminium Sitzschiene im Flugzeug verwendet werden kann. In einer nichtlinearen Analyse unter Berücksichtigung der Plastizität des Materials und von Materialfehlern wird die Auswirkung der Geometrieänderungen auf die maximale Traglast analysiert (ABAQUS 6.11). Zunächst wird das nicht-lineare Modell mit experimentell ermittelten Daten überprüft: Randbedingungen und Materialeigenschaften werden basierend auf Lastverschiebungskurven, Informationen von Dehnungsmessstreifen und Versagensmustern angepasst. Dabei wurden weniger als 1% Abweichung zwischen Simulation und Test erzielt. Die Berücksichtigung von Materialfehlern führte zu einer 5%-igen Verbesserung der Ergebnisse. Mit dem validierten Modell wird abschließend eine Gewichtsreduzierung mittels Geometrievariation durchgeführt.
2

Vaildation of nonlinear FE-simulation for design improvement

Yan, Charlotte 26 June 2013 (has links)
The aim of the project is to develop a model, which is going to be used for mass reduction of a standard profile of aluminium seat rails in Aircraft structure. Using nonlinear analysis including plasticity and material failure laws the effect of changes in geometry vs. ultimate load is analysed (ABAQUS 6.11). First, the non-linear model used is validated with experimental testing: Boundary conditions and material properties are adjusted based on load displacement curves, strain gauges information and failure patterns. Less than 1% deviation is achieved between simulation and testing. An inclusion of material imperfection led to a 5% improvement of the results. Using the validated algorithm, a mass reduction is performed via geometry variation. / Ziel der Studie ist es ein adäquates Simulationsmodell zu entwickeln, welches zur Gewichtsreduzierung einer Standardprofil Aluminium Sitzschiene im Flugzeug verwendet werden kann. In einer nichtlinearen Analyse unter Berücksichtigung der Plastizität des Materials und von Materialfehlern wird die Auswirkung der Geometrieänderungen auf die maximale Traglast analysiert (ABAQUS 6.11). Zunächst wird das nicht-lineare Modell mit experimentell ermittelten Daten überprüft: Randbedingungen und Materialeigenschaften werden basierend auf Lastverschiebungskurven, Informationen von Dehnungsmessstreifen und Versagensmustern angepasst. Dabei wurden weniger als 1% Abweichung zwischen Simulation und Test erzielt. Die Berücksichtigung von Materialfehlern führte zu einer 5%-igen Verbesserung der Ergebnisse. Mit dem validierten Modell wird abschließend eine Gewichtsreduzierung mittels Geometrievariation durchgeführt.
3

Die eindimensionale Wellengleichung mit Hysterese

Siegfanz, Monika 14 July 2000 (has links)
In dieser Arbeit entwickeln und untersuchen wir ein numerisches Schema für die eindimensionale Wellengleichung mit Hysterese für unterschiedliche Arten von Randbedingungen. Diese Gleichung ist ein Modell für die Longitudinal- oder Torsionsschwingungen eines homogenen Stabes unter dem Einfluß einer uniaxialen äußeren Kraftdichte, wobei wir ein elastoplastisches Materialgesetz annehmen. Hysterese-Operatoren sind ratenunabhängige Volterra-Operatoren, die Zeitfunktionen in Zeitfunktionen abbilden. Mit ihnen lassen sich Gedächtniseffekte modellieren, wie sie zum Beispiel in der Elastoplastizität oder im Ferromagnetismus auftauchen. Zunächst führen wir Hysterese-Operatoren allgemein ein und analysieren dann eine spezielle Klasse von Hysterese-Operatoren, die Prandtl-Ishlinskii-Operatoren. Wir untersuchen ihre Gedächtnisstruktur und erklären, wie sich die Operatoren numerisch auswerten lassen. Dazu stellen wir zwei verschiedene Approximationsansätze vor. Wir führen aus, wie sich die approximierenden Operatoren implementieren lassen und leiten lineare und quadratische Fehlerabschätzungen her. Zur numerischen Lösung des gekoppelten Systems aus der Wellengleichung mit einem Hysterese-Operator führen wir ein implizites Differenzenschema mit Gedächtnis ein. Für eine Klasse von Hysterese-Operatoren zeigen wir die Existenz und Eindeutigkeit der Lösung des numerischen Schemas, beweisen mit Hilfe von Kompaktheitsschlüssen und einem Monotonieargument die Konvergenz des Verfahrens und leiten eine Fehlerabschätzung der Ordnung 1/2 her. Wir diskutieren, wie das vorgestellte Verfahren auf die Prandtl-Ishlinskii-Operatoren angewendet werden kann. / In this thesis we develop and investigate a numerical scheme for the one-dimensional wave equation with hysteresis for different kinds of boundary conditions. This equation can be regarded as a model for the longitudinal or torsional oscillations of a homogeneous bar under the influence of an uniaxial external force density assuming an elastoplastic material law. Hysteresis operators are rate-independent Volterra operators mapping time functions to time functions. This kind of operator can be used to model memory effects as they appear in elastoplasticity or ferromagnetism, for example. We first give an introduction to the general concept of hysteresis operators before we analyze a special class of hysteresis operators called Prandtl-Ishlinskii operators. We investigate their memory structure and explain how the operators can be evaluated numerically. To that end we present two different kinds of approximation schemes. We point out how the approximating operators can be implemented and we derive linear and quadratic error estimates. For the numerical solution of the coupled system of the wave equation with a hysteresis operator we introduce an implicit difference scheme with memory. For a class of hysteresis operators we show the existence and uniqueness of the numerical solution. We prove the convergence of the scheme by compactness and monotonicity arguments. We derive an error estimate of order 1/2. We discuss the application of the method presented to Prandtl-Ishlinskii operators.
4

Analysis and numerics of the singularly perturbed Oseen equations / Analysis und Numerik der singulär gestörten Oseen-Gleichungen

Höhne, Katharina 16 November 2015 (has links) (PDF)
Be it in the weather forecast or while swimming in the Baltic Sea, in almost every aspect of every day life we are confronted with flow phenomena. A common model to describe the motion of viscous incompressible fluids are the Navier-Stokes equations. These equations are not only relevant in the field of physics, but they are also of great interest in a purely mathematical sense. One of the difficulties of the Navier-Stokes equations originates from a non-linear term. In this thesis, we consider the Oseen equations as a linearisation of the Navier-Stokes equations. We restrict ourselves to the two-dimensional case. Our domain will be the unit square. The aim of this thesis is to find a suitable numerical method to overcome known instabilities in discretising these equations. One instability arises due to layers of the analytical solution. Another instability comes from a divergence constraint, where one gets poor numerical accuracy when the irrotational part of the right-hand side of the equations is large. For the first cause, we investigate the layer behaviour of the analytical solution of the corresponding stream function of the problem. Assuming a solution decomposition into a smooth part and layer parts, we create layer-adapted meshes in Chapter 3. Using these meshes, we introduce a numerical method for equations whose solutions are of the assumed structure in Chapter 4. To reduce the instability caused by the divergence constraint, we add a grad-div stabilisation term to the standard Galerkin formulation. We consider Taylor-Hood elements and elements with a discontinous pressure space. We can show that there exists an error bound which is independent of our perturbation parameter and get information about the convergence rate of the method. Numerical experiments in Chapter 5 confirm our theoretical results.
5

Analysis and numerics of the singularly perturbed Oseen equations

Höhne, Katharina 05 November 2015 (has links)
Be it in the weather forecast or while swimming in the Baltic Sea, in almost every aspect of every day life we are confronted with flow phenomena. A common model to describe the motion of viscous incompressible fluids are the Navier-Stokes equations. These equations are not only relevant in the field of physics, but they are also of great interest in a purely mathematical sense. One of the difficulties of the Navier-Stokes equations originates from a non-linear term. In this thesis, we consider the Oseen equations as a linearisation of the Navier-Stokes equations. We restrict ourselves to the two-dimensional case. Our domain will be the unit square. The aim of this thesis is to find a suitable numerical method to overcome known instabilities in discretising these equations. One instability arises due to layers of the analytical solution. Another instability comes from a divergence constraint, where one gets poor numerical accuracy when the irrotational part of the right-hand side of the equations is large. For the first cause, we investigate the layer behaviour of the analytical solution of the corresponding stream function of the problem. Assuming a solution decomposition into a smooth part and layer parts, we create layer-adapted meshes in Chapter 3. Using these meshes, we introduce a numerical method for equations whose solutions are of the assumed structure in Chapter 4. To reduce the instability caused by the divergence constraint, we add a grad-div stabilisation term to the standard Galerkin formulation. We consider Taylor-Hood elements and elements with a discontinous pressure space. We can show that there exists an error bound which is independent of our perturbation parameter and get information about the convergence rate of the method. Numerical experiments in Chapter 5 confirm our theoretical results.:Acknowledgement III Notation IV 1 Introduction 1 1.1 Existence of solutions 2 1.2 Transformation into a fourth-order problem 4 2 Asymptotic analysis 6 2.1 A fourth-order problem in 1D 6 2.2 A fourth-order problem in 2D 14 2.2.1 Asymptotic expansion 19 2.2.2 Estimation of the residual 26 2.2.3 Asymptotic expansion without compatibility conditions 30 3 Solution decomposition and layer-adapted meshes 32 3.1 Solution decomposition 32 3.2 Layer-adapted meshes 33 3.3 Interpolation errors on layer-adapted meshes 36 4 Galerkin method and stabilisation 41 4.1 Discrete problem and stabilised formulation 41 4.2 A priori error estimates 44 5 Numerical results 48 5.1 Numerical evaluation of inf-sup constants 48 5.1.1 Theoretical aspects 48 5.1.2 Numerical results for β0 and B0 50 5.2 Convergence studies 53 5.2.1 Uniformity in ε 54 5.2.2 Convergence order 55 5.2.3 Necessity of stabilisation 56 5.2.4 Further experiments without known exact solution 56 6 Conclusions and outlook 60 A Numerical study of the stability estimate (2.35) 62 Bibliography 67
6

Topics in Least-Squares and Discontinuous Petrov-Galerkin Finite Element Analysis

Storn, Johannes 01 August 2019 (has links)
Aufgrund der fundamentalen Bedeutung partieller Differentialgleichungen zur Beschreibung von Phänomenen in angewandten Wissenschaften ist deren Analyse ein Kerngebiet der Mathematik. Durch Computer lassen sich die Lösungen für eine Vielzahl dieser Gleichungen näherungsweise bestimmen. Die dabei verwendeten numerischen Verfahren sollen auf möglichst exakte Approximationen führen und deren Genauigkeit verifizieren. Die Least-Squares Finite-Elemente-Methode (LSFEM) und die unstetige Petrov-Galerkin (DPG) Methode sind solche Verfahren. Sie werden in dieser Dissertation untersucht. Der erste Teil der Arbeit untersucht die Genauigkeit der mittels LSFEM berechneten Näherungen. Dazu werden Eigenschaften der zugrundeliegenden Differentialgleichungen mit den Eigenschaften der LSFEM kombiniert. Dies zeigt, dass die Abweichung der berechneten Näherung von der exakten Lösung einem berechenbaren Residuum asymptotisch entspricht. Ferner wird ein Verfahren zu Berechnung einer garantierten oberen Fehlerschranke eingeführt. Während etablierte Fehlerschätzer den Fehler signifikant überschätzt, zeigen numerische Experimente eine äußerst geringe Überschätzung des Fehlers mittels der neuen Fehlerschranke. Die Analyse der Fehlerschranken für das Stokes-Problem offenbart ein Beziehung der LSFEM und der LBB Konstanten. Diese Konstante ist entscheidend für die Existenz und Stabilität von Lösungen in der Strömungslehre. Der zweite Teil der Arbeit nutzt diese Beziehung und entwickelt ein auf der LSFEM basierendes Verfahren zur numerischen Berechnung der LBB Konstanten. Der dritte Teil der Arbeit untersucht die DPG Methode. Dabei werden existierende Anwendungen der DPG Methode zusammengefasst und analysiert. Diese Analyse zeigt, dass sich die DPG Methode als eine leicht gestörte LSFEM interpretieren lässt. Diese Interpretation erlaubt die Anwendung der Resultate aus dem ersten Teil der Arbeit und ermöglicht dadurch eine genauere Untersuchung existierender und die Entwicklung neuer DPG Methoden. / The analysis of partial differential equations is a core area in mathematics due to the fundamental role of partial differential equations in the description of phenomena in applied sciences. Computers can approximate the solutions to these equations for many problems. They use numerical schemes which should provide good approximations and verify the accuracy. The least-squares finite element method (LSFEM) and the discontinuous Petrov-Galerkin (DPG) method satisfy these requirements. This thesis investigates these two schemes. The first part of this thesis explores the accuracy of solutions to the LSFEM. It combines properties of the underlying partial differential equation with properties of the LSFEM and so proves the asymptotic equality of the error and a computable residual. Moreover, this thesis introduces an novel scheme for the computation of guaranteed upper error bounds. While the established error estimator leads to a significant overestimation of the error, numerical experiments indicate a tiny overestimation with the novel bound. The investigation of error bounds for the Stokes problem visualizes a relation of the LSFEM and the Ladyzhenskaya-Babuška-Brezzi (LBB) constant. This constant is a key in the existence and stability of solution to problems in fluid dynamics. The second part of this thesis utilizes this relation to design a competitive numerical scheme for the computation of the LBB constant. The third part of this thesis investigates the DPG method. It analyses an abstract framework which compiles existing applications of the DPG method. The analysis relates the DPG method with a slightly perturbed LSFEM. Hence, the results from the first part of this thesis extend to the DPG method. This enables a precise investigation of existing and the design of novel DPG schemes.
7

Adaptive finite element computation of eigenvalues

Gallistl, Dietmar 17 July 2014 (has links)
Gegenstand dieser Arbeit ist die numerische Approximation von Eigenwerten elliptischer Differentialoperatoren vermittels der adaptiven finite-Elemente-Methode (AFEM). Durch lokale Netzverfeinerung können derartige Verfahren den Rechenaufwand im Vergleich zu uniformer Verfeinerung deutlich reduzieren und sind daher von großer praktischer Bedeutung. Diese Arbeit behandelt adaptive Algorithmen für Finite-Elemente-Methoden (FEMs) für drei selbstadjungierte Modellprobleme: den Laplaceoperator, das Stokes-System und den biharmonischen Operator. In praktischen Anwendungen führen Störungen der Koeffizienten oder der Geometrie auf Eigenwert-Haufen (Cluster). Dies macht simultanes Markieren im adaptiven Algorithmus notwendig. In dieser Arbeit werden optimale Konvergenzraten für einen praktischen adaptiven Algorithmus für Eigenwert-Cluster des Laplaceoperators (konforme und nichtkonforme P1-FEM), des Stokes-Systems (nichtkonforme P1-FEM) und des biharmonischen Operators (Morley-FEM) bewiesen. Fehlerabschätzungen in der L2-Norm und Bestapproximations-Resultate für diese Nichtstandard-Methoden erfordern neue Techniken, die in dieser Arbeit entwickelt werden. Dadurch wird der Beweis optimaler Konvergenzraten ermöglicht. Die Optimalität bezüglich einer nichtlinearen Approximationsklasse betrachtet die Approximation des invarianten Unterraums, der von den Eigenfunktionen im Cluster aufgespannt wird. Der Fehler der Eigenwerte kann dazu in Bezug gesetzt werden: Die hierfür notwendigen Eigenwert-Fehlerabschätzungen für nichtkonforme Finite-Elemente-Methoden werden in dieser Arbeit gezeigt. Die numerischen Tests für die betrachteten Modellprobleme legen nahe, dass der vorgeschlagene Algorithmus, der bezüglich aller Eigenfunktionen im Cluster markiert, einem Markieren, das auf den Vielfachheiten der Eigenwerte beruht, überlegen ist. So kann der neue Algorithmus selbst im Fall, dass alle Eigenwerte im Cluster einfach sind, den vorasymptotischen Bereich signifikant verringern. / The numerical approximation of the eigenvalues of elliptic differential operators with the adaptive finite element method (AFEM) is of high practical interest because the local mesh-refinement leads to reduced computational costs compared to uniform refinement. This thesis studies adaptive algorithms for finite element methods (FEMs) for three model problems, namely the eigenvalues of the Laplacian, the Stokes system and the biharmonic operator. In practice, little perturbations in coefficients or in the geometry immediately lead to eigenvalue clusters which requires the simultaneous marking in adaptive finite element methods. This thesis proves optimality of a practical adaptive algorithm for eigenvalue clusters for the conforming and nonconforming P1 FEM for the eigenvalues of the Laplacian, the nonconforming P1 FEM for the eigenvalues of the Stokes system and the Morley FEM for the eigenvalues of the biharmonic operator. New techniques from the medius analysis enable the proof of L2 error estimates and best-approximation properties for these nonstandard finite element methods and thereby lead to the proof of optimality. The optimality in terms of the concept of nonlinear approximation classes is concerned with the approximation of invariant subspaces spanned by eigenfunctions of an eigenvalue cluster. In order to obtain eigenvalue error estimates, this thesis presents new estimates for nonconforming finite elements which relate the error of the eigenvalue approximation to the error of the approximation of the invariant subspace. Numerical experiments for the aforementioned model problems suggest that the proposed practical algorithm that uses marking with respect to all eigenfunctions within the cluster is superior to marking that is based on the multiplicity of the eigenvalues: Even if all exact eigenvalues in the cluster are simple, the simultaneous approximation can reduce the pre-asymptotic range significantly.
8

Perturbation analysis and numerical discretisation of hyperbolic partial differential algebraic equations describing flow networks

Huck, Christoph 05 December 2018 (has links)
Diese Arbeit beschäftigt sich mit verschiedenen mathematischen Fragestellungen hinsichtlich der Modellierung, Analysis und numerischen Simulation von Gasnetzen. Hierbei liegt der Fokus auf der mathematischen Handhabung von partiellen differential-algebraischen Gleichungen, die mit algebraischen Gleichungen gekoppelt sind. Diese bieten einen einfachen Zugang hinsichtlich der Modellierung von dynamischen Strukturen auf Netzen Somit sind sie insbesondere für Gasnetze geeignet, denen im Zuge der steigenden Bedeutung von erneuerbaren Energien ein gestiegenes Interesse seitens der Öffentlichkeit, Politik und Wissenschaft entgegen gebracht wird. Wir führen zunächst die gängigsten Elemente, die in Gasnetzen benötigt werden ein und formulieren zwei PDAE-Klassen für solche Netze: Eine für reine Rohrnetze, und eine, die zusätzliche Elemente wie Verdichter und Widerstände beinhaltet. Des Weiteren untersuchen wir die Sensitivität der Lösung der Rohrnetz-PDAE hinsichtlich Störungen. Dabei berücksichtigen wir Störungen, die nicht nur den dynamischen Teil der PDAE beeinflussen, sondern auch Störungen in den algebraischen Gleichungen und weisen Stabilitätseigenschaften für die Lösung der PDAE nach. Darüber hinaus beschäftigen wir uns mit einer neu entwickelten, an die Netztopologie angepassten Ortsdiskretisierung, welche die Stabilitätseigenschaften der PDAE auf DAE Systeme überträgt. Des Weiteren zeigen wir, wie sich die Gasnetz-DAE zu einer gewöhnlichen Differentialgleichung, welche die inhärente Dynamik der DAE widerspiegelt entkoppeln lässt. Dieses entkoppelte System kann darüber hinaus direkt aus den Topologie- und Elementinformationen des Netzes aufgestellt werden. Abschließend demonstrieren wir die Ergebnisse an Benchmark-Gasnetzen. Dabei vergleichen wir sowohl die entkoppelte Differentialgleichung mit dem ursprünglichen DAE System, zeigen aber auch, welche Vorteile die an die Netztopologie angepasste Ortsdiskretisierung gegenüber existierenden Verfahren besitzt. / This thesis addresses several aspects regarding modelling, analysis and numerical simulation of gas networks. Hereby, our focus lies on (partial) differential-algebraic equations, thus systems of partial and ordinary differential equations which are coupled by algebraic equations. These coupled systems allow an easy approach towards the modelling of dynamic structures on networks. Therefore, they are well suited for gas networks, which have gained a rise of attention in society, politics and science due to the focus towards renewable energies. We give an introduction towards gas network modelling that includes the most common elements that also appear in real gas networks and present two PDAE systems: One for pipe networks and one that includes additional elements like resistors and compressors. Furthermore, we investigate the impact of perturbations onto the pipe network PDAE, where we explicitly allow perturbations to affect the system in the differential as well as in the algebraic components. We conclude that the solution of the PDAE possesses stability properties. In addition, this thesis introduces a new spatial discretisation that is adapted to the net- work topology. This topology-adapted semi-discretisation results in a DAE which possesses the same perturbation behaviour as the space continuous PDAE. Furthermore, we present a topology based decoupling procedure that allows to reformulate the DAE as an ordinary differential equation (ODE), which represents the inherent dynamics of the DAE system. This ODE, together with a decoupled set of algebraic equations, can be derived from the topology and element information directly. We conclude by demonstrating the established results for several benchmark networks. This includes a comparison of numerical solutions for the decoupled ODE and the DAE system. In addition we present the advantages of the topology-adapted spatial discretisation over existing well established methods.
9

Numerical Analysis and Simulation of Coupled Systems of Stochastic Partial Differential Equations with Algebraic Constraints

Schade, Maximilian 20 September 2023 (has links)
Diese Dissertation befasst sich mit der Analyse von semi-expliziten Systemen aus stochastischen Differentialgleichungen (SDEs) gekoppelt mit stochastischen partiellen Differentialgleichungen (SPDEs) und algebraischen Gleichungen (AEs) mit möglicherweise stochastischen Anteilen in den Operatoren. Diese Systeme spielen eine entscheidende Rolle bei der Modellierung von realen Anwendungen, wie zum Beispiel elektrischen Schaltkreisen und Gasnetzwerken. Der Hauptbeitrag dieser Arbeit besteht darin, einen Rahmen bereitzustellen, in dem diese semiexpliziten Systeme auch bei stochastischen Einflüssen in den algebraischen Randbedingungen eine eindeutige Lösung haben. Wir führen einen numerischen Ansatz für solche Systeme ein und schlagen eine neue Möglichkeit vor, um Konvergenzergebnisse von driftimpliziten Methoden für SDEs auf stochastische Differential-Algebraische Gleichungen (SDAEs) zu erweitern. Dies ist wichtig, da viele Methoden für SDEs gut entwickelt sind, aber im Allgemeinen nicht für SDAEs in Betracht gezogen werden. Darüber hinaus untersuchen wir praktische Anwendungen in der Schaltkreis- und Gasnetzwerksimulation und diskutieren die dabei auftretenden Herausforderungen und Einschränkungen. Insbesondere stellen wir dabei auch einen Modellierungsansatz für Gasnetzwerke bestehend aus Rohren und algebraischen Komponenten vor. Abschließend testen wir in beiden Anwendungsfeldern die numerische Konvergenz anhand konkreter Beispiele mit verschiedenen Arten von stochastischer Modellierung. / This dissertation delves into the analysis of semi-explicit systems of stochastic differential equations (SDEs) coupled with stochastic partial differential equations (SPDEs) and algebraic equations (AEs) with possibly noise-driven operators. These systems play a crucial role in modeling real-world applications, such as electrical circuits and gas networks. The main contribution of this work is to provide a setting in which these semi-explicit systems have a unique solution even with stochastic influences in the algebraic constraints. We introduce a numerical approach for such systems and propose a new approach for extending convergence results of drift-implicit methods for SDEs to stochastic differential-algebraic equations (SDAEs). This is important, as many methods are well-developed for SDEs but generally not considered for SDAEs. Furthermore, we examine practical applications in circuit and gas network simulation, discussing the challenges and limitations encountered. In particular, we provide a modeling approach for gas networks consisting of pipes and algebraic components. To conclude, we test numerical convergence in both application settings on concrete examples with different types of stochastic modeling.
10

Influence of Molecular Diffusion on the Transport of Passive Tracers in 2D Laminar Flows

Pöschke, Patrick 05 November 2018 (has links)
In dieser Arbeit betrachten wir das Strömungs-Diffusions-(Reaktions)-Problem für passive Markerteilchen, die in zweidimensionalen laminaren Strömungsmustern mit geringem thermischem Rauschen gelöst sind. Der deterministische Fluss umfasst Zellen in Form von Quadraten oder Katzenaugen. In ihnen tritt Rotationsbewegung auf. Einige der Strömungen bestehen aus wellenförmigen Bereichen mit gerader Vorwärtsbewegung. Alle Systeme sind entweder periodisch oder durch Wände begrenzt. Eine untersuchte Familie von Strömungen interpoliert kontinuierlich zwischen Reihen von Wirbeln und Scherflüssen. Wir analysieren zahlreiche numerische Simulationen, die bisherige theoretische Vorhersagen bestätigen und neue Phänomene offenbaren. Ohne Rauschen sind die Teilchen in einzelnen Bestandteilen des Flusses für immer gefangen. Durch Hinzufügen von schwachem thermischen Rauschen wird die normale Diffusion für lange Zeiten stark verstärkt und führt zu verschiedenen Diffusionsarten für mittlere Zeiten. Mit Continuous-Time-Random-Walk-Modellen leiten wir analytische Ausdrücke in Übereinstimmung mit den numerischen Ergebnissen her, die je nach Parametern, Anfangsbedingungen und Alterungszeiten von subdiffusiver bis superballistischer anomaler Diffusion für mittlere Zeiten reichen. Wir sehen deutlich, dass einige der früheren Vorhersagen nur für Teilchen gelten, die an der Separatrix des Flusses starten - der einzige Fall, der in der Vergangenheit ausführlich betrachtet wurde - und dass das System zu vollkommen anderem Verhalten in anderen Situationen führen kann, einschließlich einem Schwingenden beim Start im Zentrum einesWirbels nach einer gewissen Alterungszeit. Darüber hinaus enthüllen die Simulationen, dass Teilchenreaktionen dort häufiger auftreten, wo sich die Geschwindigkeit der Strömung stark ändert, was dazu führt, dass langsame Teilchen von schnelleren getroffen werden, die ihnen folgen. Die umfangreichen numerischen Simulationen, die für diese Arbeit durchgeführt wurden, mussten jetzt durchgeführt werden, da wir die Rechenleistung dafür besitzen. / In this thesis, we consider the advection-diffusion-(reaction) problem for passive tracer particles suspended in two-dimensional laminar flow patterns with small thermal noise. The deterministic flow comprises cells in the shape of either squares or cat’s eyes. Rotational motion occurs inside them. Some of the flows consist of sinusoidal regions of straight forward motion. All systems are either periodic or are bounded by walls. One examined family of flows continuously interpolates between arrays of eddies and shear flows. We analyse extensive numerical simulations, which confirm previous theoretical predictions as well as reveal new phenomena. Without noise, particles are trapped forever in single building blocks of the flow. Adding small thermal noise, leads to largely enhanced normal diffusion for long times and several kinds of diffusion for intermediate times. Using continuous time random walk models, we derive analytical expressions in accordance with numerical results, ranging from subdiffusive to superballistic anomalous diffusion for intermediate times depending on parameters, initial conditions and aging time. We clearly see, that some of the previous predictions are only true for particles starting at the separatrix of the flow - the only case considered in depth in the past - and that the system might show a vastly different behavior in other situations, including an oscillatory one, when starting in the center of an eddy after a certain aging time. Furthermore, simulations reveal that particle reactions occur more frequently at positions where the velocity of the flow changes the most, resulting in slow particles being hit by faster ones following them. The extensive numerical simulations performed for this thesis had to be done now that we have the computational means to do so. Machines are powerful tools in order to gain a deeper and more detailed insight into the dynamics of many complicated dynamical and stochastic systems.

Page generated in 0.49 seconds