• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Physical Foaming of a Thermoplastic Elastomer (Styrene-Isobutylene-Styrene Copolymer) -Microcellular Foam Injection Molding and Stretching-Induced Foaming Methods / 熱可塑性工ラストマ-(SIBS)の物理発泡-微細発泡射出成形と延伸発泡法について

Lin, Weiyuan 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第24642号 / 工博第5148号 / 新制||工||1983(附属図書館) / 京都大学大学院工学研究科化学工学専攻 / (主査)教授 大嶋 正裕, 教授 竹中 幹人, 教授 佐野 紀彰 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
2

Processability and Foamability of Marine Degradable Bio-polymer,Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH),and its Cellulose Nanofiber Composites / 海洋分解性バイオポリマー(PHBH)およびセルロースナノファイバーとのコンポジットの成形と発泡性

Lee, Jisuk 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第24647号 / 工博第5153号 / 新制||工||1984(附属図書館) / 京都大学大学院工学研究科化学工学専攻 / (主査)教授 大嶋 正裕, 教授 佐野 紀彰, 教授 山本 量一 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
3

Correlations between injection molding and welding of microcellular materials

Heidrich, Dario, Brückner, Eric, Gehde, Michael 08 November 2017 (has links) (PDF)
Due to the rising demand of light-weight constructions as well as the conservation of resources, the density and weight of thermoplastic parts could be influenced significantly by using the thermoplastic foam injection molding process. The structure of the foam injection molded part, which typically means solid surface layers and a cellular core, usually results in a weight saving. Furthermore the materials structure leads to an increasing of the specific bending stiffness with a simultaneous low tendency to warp. The present study was aimed to analyze the interactions between microcellular structure, joining process and the resulting mechanical properties of the molded part. Therefore, the microcellular injection molding process (MuCell®) as well as the vibration welding were used. Whereas the established welding processes for solid injection molded parts have already achieved a high degree of perfection within the last decades, the joining of microcellular thermoplastics entails several specific characteristics, because the injection foaming process highly influences the basic material properties. In contrast to solid materials, the weld seam properties after joining are mainly affected by the design constraints of the microcellular structure.
4

Welding of foam injection molded parts – Analysis of the process - material - structure - property relations

Hofmann, Karoline, Brütting, Christian 13 December 2019 (has links)
Due to increasing demands on component integration, functionalization, saving weight or material, the density and weight of thermoplastic parts could be influenced significantly by using the thermoplastic foam injection molding process. The characteristic three-layer structure offers numerous advantages for applications, such as weight reduction, increasing the specific bending stiffness with a simultaneous low tendency to warp and optimizing thermal and acoustic properties. For a subsequent joining process, however, difficulties arise due to the thin solid skin layer. Minimum joining distances during welding can no longer be met geometrically and the mechanical properties of the components are reduced. The present study is intended to analyze the interaction between the microcellular structure of the injection molded parts, the influence on the joining process and the resulting mechanical properties. Therefore, a cooperation of Chemnitz University of Technology and University of Bayreuth was founded to investigate the correlation between injection molding and welding by vibration and infrared for microcellular polypropylene and polyamide materials. In addition to various materials with and without fiber reinforcement, the influence of storage time and different joint types were investigated in this study. The aim was to improve the knowledge of process - material - structure - properties as well as to prepare guidelines for the transfer to industrial applications. The results have shown that the characteristic three-layer structure has a considerable inhomogeneity, depending on the used material, the foaming process and the process parameters. However, the weldability of foamed thermoplastics strongly depends on the internal structure due to the injection molding parameters, the storage time between foam injection molding and welding process, the joint type and the welding process itself.
5

Correlations between injection molding and welding of microcellular materials

Heidrich, Dario, Brückner, Eric, Gehde, Michael 08 November 2017 (has links)
Due to the rising demand of light-weight constructions as well as the conservation of resources, the density and weight of thermoplastic parts could be influenced significantly by using the thermoplastic foam injection molding process. The structure of the foam injection molded part, which typically means solid surface layers and a cellular core, usually results in a weight saving. Furthermore the materials structure leads to an increasing of the specific bending stiffness with a simultaneous low tendency to warp. The present study was aimed to analyze the interactions between microcellular structure, joining process and the resulting mechanical properties of the molded part. Therefore, the microcellular injection molding process (MuCell®) as well as the vibration welding were used. Whereas the established welding processes for solid injection molded parts have already achieved a high degree of perfection within the last decades, the joining of microcellular thermoplastics entails several specific characteristics, because the injection foaming process highly influences the basic material properties. In contrast to solid materials, the weld seam properties after joining are mainly affected by the design constraints of the microcellular structure.

Page generated in 0.127 seconds