• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Study of Foam Mobility Control in Surfactant Enhanced Oil Recovery Processes in One-Dimensional, Heterogeneous Two-Dimensional, and Micro Model Systems

January 2011 (has links)
The focus of this thesis was conducting experiments which would help in understanding mechanisms and in design of surfactant enhanced oil recovery (EOR) processes in various scenarios close to reservoir conditions such as heterogeneity, effects of crude oil, wettability, etc. Foam generated in situ by surfactant alternating gas injection was demonstrated as a substitute for polymer drive in a 1-D FOR process. It was effective in a similar process for a 266 cp crude oil even though the system did not have favorable mobility control. Foam enhanced sweep efficiency in a layered sandpack with a 19:1 permeability ratio. Foam diverted surfactant from the high- to the low-permeability layer. Ahead of the foam front, liquid in the low-permeability layer crossflowed into the high-permeability layer. Foam completely swept the system in 1.3 TPV (total pore volume) fluid injection while waterflood required 8 TPV. When the same 2-D system was oil-wet, the recovery by watertlood was only 49.1% of original oil-in-place (OOIP) due to injected water flowing through high-permeability zone leaving low-permeability zone unswept. To improve recovery, an anionic surfactant blend (NI) was injected that altered the wettability and lowered the interfacial tension (IFT) and consequently enabled gravity and capillary pressure driven vertical counter-current flow to occur and exchange fluids between layers during a 42-day system shut-in. Cumulative recovery after a subsequent foamflood was 94.6% OOIP. The addition of lauryl betaine to NI at a weight ratio of 2:1 made the new NIB a good IFT-reducing and foaming agent with crude oil present. It showed effectiveness in water-wet homogeneous and oil-wet heterogeneous sandpacks. The unique attribute of foam with higher apparent viscosity in high- than in low-permeability regions makes it a better mobility control agent than polymer in heterogeneous systems. One single surfactant formulation such as NIB in this study that can simultaneously reduce IFT and generate foam will improve the microscopic displacement and sweep efficiency from the beginning of a chemical flooding process. Foam generation mechanisms, alkaline/surfactant processes, and foam stability in presence of crude oil were investigated in a glass micro model. Total acid number measurement with spiking method was discussed.
2

Transport of Surfactant and Foam in Porous Media for Enhanced Oil Recovery Processes

Ma, Kun 16 September 2013 (has links)
The use of foam-forming surfactants offers promise to improve sweep efficiency and mobility control for enhanced oil recovery (EOR). This thesis provides an in depth understanding of transport of surfactant and foam through porous media using a combination of laboratory experiments and numerical simulations. In particular, there are several issues in foam EOR processes that are examined. These include screening of surfactant adsorption onto representative rock surfaces, modeling of foam flow through porous media, and studying the effects of surface wettability and porous media heterogeneity. Surfactant adsorption onto rock surfaces is a main cause of foam chromatographic retardation as well as increased process cost. Successful foam application requires low surfactant adsorption on reservoir rock. The focus of this thesis is natural carbonate rock surfaces, such as dolomite. Surfactant adsorption was found to be highly dependent on electrostatic interactions between surfactants and rock surface. For example, the nonionic surfactant Tergitol 15-S-30 exhibits low adsorption on dolomite under alkaline conditions. In contrast, high adsorption of cationic surfactants was observed on some natural carbonate surfaces. XPS analysis reveals silicon and aluminum impurities exist in natural carbonates, but not in synthetic calcite. The high adsorption is due to the strong electrostatic interactions between the cationic surfactants and negative binding sites in silica and/or clay. There are a number of commercial foam simulators, but an approach to estimate foam modeling parameters from laboratory experiments is needed to simulate foam transport. A one-dimensional foam simulator is developed to simulate foam flow. Chromatographic retardation of surfactants caused by adsorption and by partition between phases is investigated. The parameters in the foam model are estimated with an approach utilizing both steady-state and transient experiments. By superimposing contour plots of the transition foam quality and the foam apparent viscosity, one can estimate the reference mobility reduction factor (fmmob) and the critical water saturation (fmdry) using the STARS foam model. The parameter epdry, which regulates the abruptness of the foam dry-out effect, can be estimated by a transient foam experiment in which 100% gas displaces surfactant solution at 100% water saturation. Micromodel experiments allow for pore-level visualization of foam transport. We have developed model porous media systems using polydimethylsiloxane. We developed a simple method to tune and pattern the wettability of polydimethylsiloxane (PDMS) to generate porous media models with specific structure and wettability. The effect of wettability on flow patterns is observed in gas-liquid flow. The use of foam to divert flow from high permeable to low permeable regions is demonstrated in a heterogeneous porous micromodel. Compared with 100% gas injection, surfactant-stabilized foam effectively improves the sweep of the aqueous fluid in both high and low permeability regions of the micromodel. The best performance of foam on fluid diversion is observed in the lamella-separated foam regime, where the presence of foam can enhance gas saturation in the low permeable region up to 45.1% at the time of gas breakthrough. In conclusion, this thesis provides new findings in surfactant adsorption onto mineral surfaces, in the methodology of estimating foam parameters for reservoir simulation, and in micromodel observations of foam flow through porous media. These findings will be useful to design foam flooding in EOR processes.
3

Dynamics of foam mobility in porous media

Balan, Huseyin Onur 07 October 2013 (has links)
Foam reduces gas mobility in porous media by trapping substantial amount of gas and applying a viscous resistance of flowing lamellas to gas flow. In mechanistic foam modeling, gas relative permeability is significantly modified by gas trapping, while an effective gas viscosity, which is a function of flowing lamella density, is assigned to flowing gas. A complete understanding of foam mobility in porous media requires being able to predict the effects of pressure gradient, foam texture, rock and fluid properties on gas trapping, and therefore gas relative permeability, and effective gas viscosity. In the foam literature, separating the contributions of gas trapping and effective gas viscosity on foam mobility has not been achieved because the dynamics of gas trapping and its effects on the effective gas viscosity have been neglected. In this study, dynamics of foam mobility in porous media is investigated with a special focus on gas trapping and its effects on gas relative permeability and effective gas viscosity. Three-dimensional pore-network models representative of real porous media coupled with fluid models characterizing a lamella flow through a pore throat are used to predict flow paths, threshold pressure gradient and Darcy velocity of foam. It is found that the threshold path and the pore volume open above the threshold pressure are independent of the fluid model used in this study. Furthermore, analytical correlations of flowing gas fraction as functions of pressure gradient, lamella density, rock and fluid properties are obtained. At a constant pressure gradient, flowing gas fraction increases as overall lamella density decreases. In the discontinuous-gas foam flow regime, there exists a threshold pressure gradient, which increases with overall lamella density. One of the important findings of this study is that gas relative permeability is a strong non-linear function of flowing gas fraction, opposing most of the existing theoretical models. However, the shape of the relative gas permeability curve is poorly sensitive to overall lamella density. Flowing and trapped lamella densities change with pressure gradient. Moreover, analytical correlations of effective gas viscosity as functions of capillary number, lamella density and rock properties are obtained by up-scaling a commonly used pore-scale apparent gas (lamella) viscosity model. Effective gas viscosity increases nonlinearly with flowing lamella density, which opposes to the existing linear foam viscosity models. In addition, the individual contributions of gas trapping and effective gas viscosity on foam mobility are quantified for the first time. The functional relationship between effective gas viscosity and flowing lamella density in the presence of dynamic trapped gas is verified. A mechanistic foam model is developed by using the analytical correlations of flowing gas fraction and effective gas viscosity generated from the pore-network study and a modified population balance model. The developed model is successful in simulating unsteady-state and steady state flow of foam through porous media. Moreover, the flow behaviors in high- and low-quality flow regimes are verified by the experimental studies in the literature. Finally, the simulation results are successfully history matched with two different core-flood data. / text

Page generated in 0.0502 seconds