• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 25
  • 25
  • 15
  • 13
  • 9
  • 9
  • 9
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Foamy-like endogenous retroviruses are extensive and abundant in teleosts

Ruboyianes, Ryan, Worobey, Michael 30 December 2016 (has links)
Recent discoveries indicate that the foamy virus (FV) (Spumavirus) ancestor may have been among the first retroviruses to appear during the evolution of vertebrates, demonstrated by foamy endogenous retroviruses present within deeply divergent hosts including mammals, coelacanth, and ray-finned fish. If they indeed existed in ancient marine environments hundreds of millions of years ago, significant undiscovered diversity of foamy-like endogenous retroviruses might be present in fish genomes. By screening published genomes and by applying PCR-based assays of preserved tissues, we discovered 23 novel foamy-like elements in teleost hosts. These viruses form a robust, reciprocally monophyletic sister clade with sarcopterygian host FV, with class III mammal endogenous retroviruses being the sister group to both clades. Some of these foamy-like retroviruses have larger genomes than any known retrovirus, exogenous or endogenous, due to unusually long gag-like genes and numerous accessory genes. The presence of genetic features conserved between mammalian FV and these novel retroviruses attests to a foamy-like replication biology conserved for hundreds of millions of years. We estimate that some of these viruses integrated recently into host genomes; exogenous forms of these viruses may still circulate.
2

Early Events in Foamy Virus - Host Interaction and Intracellular Trafficking

Lindemann, Dirk, Berka, Ursula, Hamann, Martin Volker 18 December 2015 (has links) (PDF)
Here we review viral and cellular requirements for entry and intracellular trafficking of foamy viruses (FVs) resulting in integration of viral sequences into the host cell genome. The virus encoded glycoprotein harbors all essential viral determinants, which are involved in absorption to the host membrane and triggering the uptake of virus particles. However, only recently light was shed on some details of FV’s interaction with its host cell receptor(s). Latest studies indicate glycosaminoglycans of cellular proteoglycans, particularly heparan sulfate, to be of utmost importance. In a species-specific manner FVs encounter endogenous machineries of the target cell, which are in some cases exploited for fusion and further egress into the cytosol. Mostly triggered by pH-dependent endocytosis, viral and cellular membranes fuse and release naked FV capsids into the cytoplasm. Intact FV capsids are then shuttled along microtubules and are found to accumulate nearby the centrosome where they can remain in a latent state for extended time periods. Depending on the host cell cycle status, FV capsids finally disassemble and, by still poorly characterized mechanisms, the preintegration complex gets access to the host cell chromatin. Host cell mitosis finally allows for viral genome integration, ultimately starting a new round of viral replication.
3

Δημιουργία φορέων με βάση τον αφρώδη ιό και το στοιχείο SAR/MAR και ανάλυση της γονιδιακής έκφρασής των σε διαμολυσμένα κύτταρα

Γεωργίτση, Μαριάννα 04 January 2008 (has links)
Σκοπός της συγκεκριμένης μελέτης είναι η δημιουργία ενός οχήματος βασισμένου στον ιό FV το οποίο να περιέχει το στοιχείο S/MAR 2000. Το όχημα αυτό θα περιέχει το γονίδιο αναφοράς GFP (green fluorescent protein), υπό τον υποκινητή Mscv και το στοιχείο S/MAR2000 στην αντίστροφη κατεύθυνση (pDFMscvF.SMAR2000r) με σκοπό τη μείωση του κινδύνου της παράπλευρης ενεργοποίησης γονιδίων στο σημείο ενσωμάτωσης των φορέων FV. Έπειτα θα πραγματοποιηθεί εισαγωγή του οχήματος pDFMscvF.SMAR2000r, παρουσία του στοιχείου S/MAR σε κύτταρα 293T για την παραγωγή vector stocks και εισαγωγή αυτών σε κύτταρα Ηela για τη μελέτη της δράσης του οχήματος που κατασκευάσαμε. Η ανάλυση της έκφρασης του γονιδίου αναφοράς GFP στα κύτταρα αυτά θα γίνει με τη χρήση της κυτταρομετρίας ροής. / -
4

Paleovirology: Using Endogenous Retroviruses Within Animal Genomes To Understand The Deep History Of Retroviruses

Han, Guanzhu January 2014 (has links)
Retroviruses infect a wide range of vertebrates. The understanding of the deep history and host distribution of retroviruses remains far from complete. Retroviruses can be integrated into their host genomes and occasionally become vertically inherited genomic loci. These integrated retroviruses, known as endogenous retroviruses (ERVs), provide "molecular fossils" for past retroviral infections and are useful for studying the deep history and ecology of retroviruses. ERVs are highly abundant in vertebrate genomes. However, endogenous foamy viruses and lentiviruses appear to be extremely rare. The primary focus of the research presented here is to discover and analyze novel endogenous foamy viruses and lentiviruses in animal genomes. Foamy virus has been thought to exclusively infect three placental mammal superorders (Laurasiatheria, Euarchontoglires, and Xenarthra). The discovery of endogenous foamy viral elements (CoeEFV) in the genome of the coelacanth (Latimeria chalumnae) extends the host range of foamy viruses to fish lineages (Appendix A). I demonstrate that foamy viruses have likely codiverged with their vertebrate hosts for more than 407 million years. The discovery of CoeEFV provides evidence for an ancient marine origin of retroviruses. Endogenous foamy virus-like elements (PSFVaye) were also identified within the genome of a Malagasy lemur, the aye-aye (Daubentonia madagascariensis) (Appendix B). Phylogenetic analysis shows that PSFVaye is divergent from all currently known simian foamy viruses, suggesting a potentially ancient association between foamy viruses and primate species. Another novel endogenous foamy virus (CaEFV) was identified in the genome of the Cape golden mole (Chrysochloris asiatica). The discovery of CaEFV reveals foamy virus infection in the placental mammal superorder Afrotheria and the long-term cospeciation between foamy viruses and placental mammals (Appendix C). Lentivirus has been thought to have a relatively recent origin. Endogenous lentivirus insertions (MELV) were discovered within the genomes of some species of the Weasel family (Mustelidae) (Appendix D). I verified the presence of MELV insertions in the genomes of several species of the Lutrinae and Mustelinae subfamilies but not the Martinae subfamily, which suggests that the lentiviral invasion likely occurred between 8.8 and 11.8 million years ago. Phylogenetic analysis suggests MELV might represent a novel lentiviral group. The discovery of MELV extends the host range of lentiviruses to the Caniformia. Endogenous lentiviruses (GvaELV) were also identified in the genome of the Sunda flying lemur (Galeopterus variegatus) (Appendix E). Phylogenetic analysis shows that GvaELV is a sister group of all known lentiviruses. The discovery of GvaELV might give a clue to the early evolution of lentiviral genome architecture. In summary, the discoveries and analyses of these novel ERVs provide important insights into the deep history and ecology of foamy viruses and lentiviruses as well as the retroviruses as a whole.
5

Characteristics of a Foamy Virus-Derived Vector that allow for safe Autologous Gene Therapy to correct Leukocyte Adhesion Deficiency Type 1

McNichol, Ryan Matthew 09 November 2007 (has links)
No description available.
6

Prototype Foamy Virus Capsid – Nucleic Acid Interactions: Mechanistic Insights & Application for Efficient RNA Transfer

Hamann, Martin V. 24 February 2023 (has links)
Foamy viruses (FV) represent a distinct genus in the retrovirus family and separate themselves from the large group of orthoretroviruses by various distinct features in their replication cycle (reviewed in Lindemann & Rethwilm, 2011). In gene therapy retroviruses are commonly used as vectors to deliver genetic information into target cells and also FV has been successfully used for example in a canine genetic disease model (Trobridge et al., 2009). Here we investigated the interactions between the FV capsid-forming protein ‘Gag’ and nucleic acids. We found that prototype FV (PFV) Gag binds various cellular mRNAs, incorporates them into the nascent particle and thereby enables their transfer into the cytosol of target cells. There these mRNAs can serve as template for protein translation. This feature seems uniquely efficient for PFV and we developed it further into a “RNA transfer vector system” allowing efficient transgene mRNA transfer into target cells, as showed in proof-of-principle experiments in vitro and in vivo (Hamann et al., 2014a). In parallel we started investigating the specificity in viral RNA genome packaging (Hamann et al., 2014b). To date little is known how PFV selects its RNA genome over the vast excess of cellular RNAs present in the cytosol. Elevated fundamental knowledge of this mechanism could help to make the “RNA transfer vector system” even more efficient since it would allow enrichment of certain specific “designer-RNAs” in virus particles.
7

Foamy virus for efficient gene transfer in regeneration studies

Tanaka, Elly M., Lindemann, Dirk, Sandoval-Guzmán, Tatiana, Stanke, Nicole, Protze, Stephanie 01 October 2015 (has links) (PDF)
Background Molecular studies of appendage regeneration have been hindered by the lack of a stable and efficient means of transferring exogenous genes. We therefore sought an efficient integrating virus system that could be used to study limb and tail regeneration in salamanders. Results We show that replication-deficient foamy virus (FV) vectors efficiently transduce cells in two different regeneration models in cell culture and in vivo. Injection of EGFP-expressing FV but not lentivirus vector particles into regenerating limbs and tail resulted in widespread expression that persisted throughout regeneration and reamputation pointing to the utility of FV for analyzing adult phenotypes in non-mammalian models. Furthermore, tissue specific transgene expression is achieved using FV vectors during limb regeneration. Conclusions FV vectors are efficient mean of transferring genes into axolotl limb/tail and infection persists throughout regeneration and reamputation. This is a nontoxic method of delivering genes into axolotls in vivo/ in vitro and can potentially be applied to other salamander species.
8

Early Events in Foamy Virus - Host Interaction and Intracellular Trafficking

Lindemann, Dirk, Berka, Ursula, Hamann, Martin Volker 18 December 2015 (has links)
Here we review viral and cellular requirements for entry and intracellular trafficking of foamy viruses (FVs) resulting in integration of viral sequences into the host cell genome. The virus encoded glycoprotein harbors all essential viral determinants, which are involved in absorption to the host membrane and triggering the uptake of virus particles. However, only recently light was shed on some details of FV’s interaction with its host cell receptor(s). Latest studies indicate glycosaminoglycans of cellular proteoglycans, particularly heparan sulfate, to be of utmost importance. In a species-specific manner FVs encounter endogenous machineries of the target cell, which are in some cases exploited for fusion and further egress into the cytosol. Mostly triggered by pH-dependent endocytosis, viral and cellular membranes fuse and release naked FV capsids into the cytoplasm. Intact FV capsids are then shuttled along microtubules and are found to accumulate nearby the centrosome where they can remain in a latent state for extended time periods. Depending on the host cell cycle status, FV capsids finally disassemble and, by still poorly characterized mechanisms, the preintegration complex gets access to the host cell chromatin. Host cell mitosis finally allows for viral genome integration, ultimately starting a new round of viral replication.
9

Use of murine models to test novel gene transfer strategies for the treatment of Fanconi anemia

Leath, Anna C. 09 March 2011 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The dawn of the genetic era has allowed for investigation of gene transfer therapy as a treatment for certain diseases. Fanconi anemia (FA) is a rare genetic disorder in which the majority of patients develops progressive bone marrow failure (BMF) and require bone marrow transplantation. A possible alternative treatment is autologous gene therapy; however, original clinical trials involving gene transfer for FA were unsuccessful. This has led to re-evaluation of the gene transfer protocols, the vectors and also a deeper investigation of the FA pathway itself. My work has focused on illuminating these areas to further advance gene transfer therapy for FA. Many gene transfer protocols require the hematopoietic stem and progenitor cells (HSC/HPC) to be collected and then transduced ex vivo. The most common collection method is mobilization of the HSC/HPC to the peripheral blood (PB) using granulocyte colony-stimulating factor (G-CSF) and collection via apheresis. In FA patients G-CSF fails to mobilize a sufficient number of HSC/HPC. This has led to research into agents such as AMD3100, a CXCR4 antagonist, which may replace or augment G-CSF mobilization. These data show in two FA murine models that AMD3100 synergizes with G-CSF resulting in a significant increase in mobilization as compared to G-CSF alone. Previous work in our lab has shown that prototype foamy virus (FV) is an efficient gene transfer vector. Here a modified FV vector is used to transduce mobilized FA cells. The data indicate that long-term repopulating cells mobilized with both G-CSF and AMD3100 can be efficiently transduced by our FV vector. Clinically, FA is characterized mainly by BMF, but also by myelodysplasia (MDS) and acute myeloid leukemia (AML). However, current FA murine models do not display these disease phenotypes. These data show that double-mutant Fancc-/-;Fancg-/- mice spontaneously develop BMF, MDS and complex random chromosomal abnormalities that the single-mutant mice do not. Importantly, this model closely recapitulates the phenotypes found in FA patients and may be useful as a preclinical platform to evaluate the molecular pathogenesis of spontaneous BMF and MDS in FA and novel gene transfer protocols for FA.
10

Developing a Model System to Probe Biological Mechanisms of Post-Translational Modifications that Destabilize the Nucleosome

Beasley, Miranda L. January 2014 (has links)
No description available.

Page generated in 0.044 seconds