• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 14
  • 14
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Identification of odorous compounds in commercial chaw tofu and evaluation of the quality of model broths during fermentation.

January 2005 (has links)
Cheung Hiu-Ming. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 140-150). / Abstracts in English and Chinese. / ABSTRACT --- p.i / ACKNOWLEDGEMENTS --- p.vi / LIST OF FIGURES --- p.xiii / LIST OF TABLES --- p.xv / Chapter CHAPTER 1 --- LITERATURE REVIEW --- p.1 / Chapter 1.1 --- Introduction --- p.2 / Chapter 1.2 --- Soybeans --- p.3 / Chapter 1.2.1 --- Chemistry and nutritional value of soybeans --- p.3 / Chapter 1.2.2 --- Protein composition of soybeans --- p.4 / Chapter 1.2.3 --- Volatile compounds in soybeans --- p.4 / Chapter 1.3 --- Food fermentation --- p.5 / Chapter 1.4 --- Chaw tofu --- p.6 / Chapter 1.4.1 --- Preparation of tofu --- p.7 / Chapter 1.4.2 --- Preparation of chaw tofu --- p.7 / Chapter 1.4.3 --- Microorganisms involved in fermentation of chaw tofu --- p.8 / Chapter 1.4.4 --- Volatile components in chaw tofu --- p.11 / Chapter 1.4.5 --- Proteolytic activity of chaw tofu --- p.12 / Chapter 1.5 --- Stinky brine broth --- p.13 / Chapter 1.5.1 --- The pH value of stinky brine broth --- p.13 / Chapter 1.5.2 --- The salt percentage of stinky brine broth --- p.14 / Chapter 1.5.3 --- Volatile components of stinky brine broth --- p.14 / Chapter 1.5.4 --- Parameters affecting ammonia production of stinky brine --- p.15 / Chapter 1.6 --- Other fermented soy products --- p.16 / Chapter 1.6.1 --- Microorganisms involved in the fermentation --- p.16 / Chapter 1.6.1.1 --- Fermentation of soybean by bacteria --- p.17 / Chapter 1.6.1.1.1 --- Natto --- p.17 / Chapter 1.6.1.1.2 --- Kinema --- p.18 / Chapter 1.6.1.1.3 --- Soy daddawa --- p.19 / Chapter 1.6.1.1.4 --- Hawaijar --- p.20 / Chapter 1.6.1.1.5 --- Thua nao --- p.21 / Chapter 1.6.1.2 --- Fermentation of soybean by moulds --- p.21 / Chapter 1.6.1.2.1 --- Tempe --- p.21 / Chapter 1.6.1.2.2 --- Sufu --- p.22 / Chapter 1.6.1.2.3 --- Soy sauce --- p.22 / Chapter 1.6.1.2.4 --- Soy paste --- p.23 / Chapter 1.6.2 --- Formation of volatile compounds during Bacillus fermentation --- p.24 / Chapter 1.6.3 --- Biochemical changes during fermentation --- p.21 / Chapter 1.7 --- Methods of flavor analysis --- p.30 / Chapter 1.7.1 --- Headspace Analysis --- p.31 / Chapter 1.7.2 --- Aroma characterization --- p.32 / Chapter CHAPTER 2 --- IDENTIFICATION OF ODOROUS COMPOUNDS IN COMMERCIAL CHAW TOFU BASED ON ODOR ACTIVITY EVALUATION --- p.42 / Chapter 2.1 --- Introduction --- p.43 / Chapter 2.2 --- Materials & Methods --- p.46 / Chapter 2.2.1 --- Experimental samples --- p.46 / Chapter 2.2.2 --- Headspace-Gas Chromatography-Mass Spectrometry (GC-MS) --- p.46 / Chapter 2.2.3 --- Conditions of the Gas Chromatography-Mass Spectrometry (GC-MS) --- p.47 / Chapter 2.2.4 --- Compound identifications --- p.48 / Chapter 2.2.5 --- Quantification of compounds --- p.48 / Chapter 2.2.6 --- Statistical analysis --- p.48 / Chapter 2.2.7 --- Calculation of odor activity value (OAV) --- p.49 / Chapter 2.3 --- Results & Discussion --- p.50 / Chapter 2.3.1 --- Odor activity value (OAV) --- p.51 / Chapter 2.3.2 --- Volatile compounds in fresh samples --- p.51 / Chapter 2.3.2.1 --- Comparison of odorous compounds in fresh samples among different locations --- p.52 / Chapter 2.3.3 --- Volatile compounds in deep-fat fried samples --- p.53 / Chapter 2.3.3.1 --- Comparison of odorous compounds in deep-fat fried samples among different locations --- p.54 / Chapter 2.3.4 --- Comparison between fresh and deep-fat fried samples --- p.55 / Chapter 2.3.5 --- Odorous compounds of chaw tofu based on OAVs --- p.56 / Chapter 2.3.6 --- Possible ways for formation of odorous compounds --- p.58 / Chapter 2.3.6.1 --- Protein degradation --- p.58 / Chapter 2.3.6.2 --- Lipid degradation --- p.59 / Chapter 2.3.7 --- Comparison between volatile compounds in chaw tofu and others fermented soybean products --- p.60 / Chapter 2.4 --- Conclusion --- p.61 / Chapter CHAPTER 3 --- IDENTIFICATION OF ODOROUS COMPOUNDS IN COMMERCIAL CHAW TOFU BASED ON GAS CHROMATOGRAPHY-OLFACTOMETRY --- p.67 / Chapter 3.1 --- Introduction --- p.68 / Chapter 3.2 --- Materials & Methods --- p.71 / Chapter 3.2.1 --- Experimental samples --- p.71 / Chapter 3.2.2 --- Gas Chromatography-Mass Spectrometry-Flame Ionization Detection-Olfactometry (GC-MS-FID-O) --- p.71 / Chapter 3.2.3 --- Conditions of the Gas Chromatography-Mass Spectrometry --- p.72 / Chapter 3.2.4 --- Detection of odor active compounds --- p.73 / Chapter 3.2.5 --- Compound identifications --- p.73 / Chapter 3.3 --- Results & Discussion --- p.74 / Chapter 3.3.1 --- "Fecal, rancid and putrid odor" --- p.74 / Chapter 3.3.2 --- "Cabbages, sulfurous and meaty odor" --- p.76 / Chapter 3.3.3 --- Green odor --- p.77 / Chapter 3.3.4 --- Other odor contributing compounds --- p.77 / Chapter 3.3.5 --- Odor generate during deep-fat frying --- p.78 / Chapter 3.3.6 --- Comparison between GC-O and OAVs --- p.79 / Chapter 3.3.7 --- Comparison between volatile compounds in chaw tofu and others fermented soybean products --- p.80 / Chapter 3.4 --- Conclusion --- p.82 / Chapter CHAPTER 4 --- EVALUATION OF CHAW TOFU MODEL FERMENTATION BROTH --- p.86 / Chapter 4.1 --- Introduction --- p.87 / Chapter 4.2 --- Materials & Methods --- p.90 / Chapter 4.2.1 --- Model fermentation broth preparation --- p.90 / Chapter 4.2.2 --- Tofu sample preparation --- p.91 / Chapter 4.2.3 --- Gas Chromatography-Mass Spectrometry --- p.91 / Chapter 4.2.3.1 --- Conditions of Gas Chromatography-Mass Spectrometry (GC-MS) --- p.92 / Chapter 4.2.3.2 --- Compound identification --- p.93 / Chapter 4.2.3.3 --- Quantification of compounds --- p.93 / Chapter 4.2.4 --- Viable cell counts --- p.93 / Chapter 4.2.5 --- pH value and soluble content --- p.94 / Chapter 4.2.6 --- Proteolytic activity --- p.94 / Chapter 4.2.7 --- Statistical analysis --- p.95 / Chapter 4.3 --- Results & Discussion --- p.96 / Chapter 4.3.1 --- Headspaces analysis --- p.96 / Chapter 4.3.1.1 --- Changes in volatile composition in model fermentation broths --- p.97 / Chapter 4.3.1.2 --- Comparison of volatile compositions between the broths --- p.98 / Chapter 4.3.1.3 --- Comparison of volatile compositions among the three deep-fat fried fermented tofu with different broths --- p.101 / Chapter 4.3.1.4 --- Comparison of volatile compositions of deep fat fried fermented tofu with that of the commercial chaw tofu --- p.102 / Chapter 4.3.2 --- Liquid samples analysis --- p.104 / Chapter 4.3.2.1 --- "Changes in viable cell counts, pH values, protease activities and soluble solid contents within model fermentation broths during fermentation" --- p.106 / Chapter 4.3.2.2 --- Viable cell counts --- p.107 / Chapter 4.3.2.3 --- Soluble solid content --- p.108 / Chapter 4.3.2.4 --- Proteolytic activity --- p.106 / Chapter 4.3.2.5 --- pH value --- p.110 / Chapter 4.4 --- Conclusion --- p.112 / Chapter CHAPTER 5 --- GENERAL CONCLUSION --- p.127 / APPENDIX --- p.130 / IDENTIFICATION OF MICROORGANISMS PRESENTED IN THE MODEL CHAW TOFU FERMENTATION BROTHS BY MICROBIAL IDENTIFICATION SYSTEM (MIDI) --- p.130 / Materials & Methods --- p.130 / Model fermentation broth preparation --- p.130 / Viable cell counts --- p.131 / Microbial Identification System (MIDI) --- p.131 / Results --- p.133 / Suggestion on further investigation --- p.134 / REFERNECES --- p.141
12

Influência dos parâmetros de processo na formação do aroma e sabor indesejado de cereal em café aglomerado

Leobet, Elenir Lila 08 November 2013 (has links)
O café solúvel aglomerado é produto da aglomeração do café solúvel em pó. A sua produção envolve etapas de processo cujas variações térmicas modificam qualitativamente e quantitativamente a fração de compostos voláteis responsáveis pelo aroma e sabor do produto acabado. A indústria de bebidas de café considera o sabor e aroma de cereal como um defeito na produção de café solúvel aglomerado. Desta forma, este trabalho objetivou aplicar o planejamento experimental para avaliação dos parâmetros de processo da produção de café solúvel aglomerado em escala industrial. Os efeitos destes parâmetros nos componentes voláteis do café e na intensidade do gosto de cereal foram avaliados através do planejamento fracionário 24-1 com resolução IV. As variáveis independentes estudadas foram temperatura do queimador (TQ), fluxo de ar de processo (FA), temperatura da seção quente do leito (TL) e pressão de vapor (PV). Os resultados do planejamento experimental deram-se pela utilização de análise sensorial conduzida por equipe treinada para a detecção do aroma e sabor indesejado. Adicionalmente, os compostos voláteis foram extraídos pela técnica microextração em fase sólida com amostragem no headspace (HS-MFES), identificados e quantificados por cromatografia gasosa acoplada a espectrometria de massa (CG-EM). O efeito dos fatores estudados foi avaliado mediante análise de variância (ANOVA) com nível de significância de 90% e os resultados expressos por gráficos de pareto. A análise de componentes principais (ACP) foi realizada com o intuito de identificar dentre os compostos que podem conferir sabor e aroma de cereais aqueles tem a maior contribuição e quais as condições de processo ideias para evitar a formação do sabor e aroma de cereal. De acordo com ACP foi constatado que piridina, 2-metoxi-4-vinilfenol, 2,3-dimetilpirazina, 2,5-dimetilpirazina, 2,6-dimetilpirazina, 4-metiltiazol, pirazina, 2-metoxifenol, 4,5-dimetiltiazol contribuem para formação do sabor e aroma de cereal. Também indicou que a aglomeração deve ocorrer conforme TQ=215ºC, FA=250rpm, TL=120ºC e PV=1,2 x100KPa. / The agglomerated instant coffee is the product of the powder instant coffee agglomeration. Its production involves stages of processes whose thermal variations change qualitatively and quantitatively the volatile compounds fractions responsible for the aroma and flavor of the finished product. The coffee beverage industry considers the cereal like flavor and aroma as a fault in the production of the agglomerated instant coffee. In this way, this study had as the aim to apply experimental plan to evaluate the parameters of the processes of the agglomerated instant coffee production on an industrial scale. The effects of those parameters in the coffee volatile components and in the intensity of the cereal taste were evaluated through the fractional 24-1 with resolution IV. The independent variables studied were the burner temperature (BT), the process air flow (AF), the temperature of the fluidized bed hot section (LT) and the steam pressure (SP). The results of the experimental plan were made by the use of sensory analysis performed by a trained team for the detection of the undesired aroma and flavor. Additionally, the volatile compounds were extracted by solid-phase microextractiontechniquewithsampling in theheadspace (HS-SPME), identified and quantified by gas chromatography coupled to mass spectrometry (GC-MS). The effect of the factors studied was evaluated by variance analysis (ANOVA) with significance level of 90% and the results showed by Pareto charts. The principal components analysis (PCA) was made with the aim to identify, among several compounds, those that implies on more cereal flavor and aroma, those which major contribution and which ideal process conditions could be used to reduce the cereal flavor and aroma development. According to PCA, it was found that pyridine, 2-metoxi-4-vinylphenol, 2,3-dimethylpyrazine, 2,5-dimetylpyrazine, 2,6-dimethylpyrazine, 4-methyltiazol, pyrazine, 2-methoxyphenol, 4,5-dimethylthiazol contribute to the development of the cereal flavor and aroma. It was also found that the agglomeration must be according to TQ = 215°C, AF=250 rpm, LT=120°C and EPV = 1,2 x 100 KPa.
13

Aplicação de técnicas analíticas instrumentais e físio-químicas com quimioterapia para avaliação da qualidade e discriminação de óleos vegetais e azeites de oliva extra virgem / Application of instrumental analytical and physicochemical techniques with chemometrics for evaluation of the quality and discrimination of vegetable oils

Ferreira, Maresa Custodio Molinari 19 February 2016 (has links)
CAPES / Garantir a qualidade de produtos alimentícios como óleos vegetais é de grande importância para indústrias e pesquisas relacionadas à área de alimentos. Óleos vegetais podem ter sua composição adulterada ou suspeita devido à presença de outros óleos de menor valor comercial. Além disso, problemas relacionados à conservação durante o armazenamento, como, o desenvolvimento de ácidos graxos de cadeia curta e ácidos graxos livres, podem ser desencadeados por processos de degradação. Alterações na composição de óleos podem ser detectadas a partir do uso de cromatografia, enquanto técnicas titulométricas como índice de acidez e saponificação auxiliam na verificação da estabilidade durante a cadeia de distribuição e consumo. Essas técnicas aliadas à espectroscopia e a métodos de análise estatística multivariada permitem, portanto, determinar a qualidade e realizar a discriminação de óleos vegetais. Foram utilizadas 38 amostras de óleos vegetais sendo: 10 de óleo de soja, 6 de milho, 6 de girassol, 6 de canola, 9 azeites de oliva extra virgem e 1 óleo misto de soja e canola. Foram obtidas as composições em ácidos graxos utilizando-se cromatografia gasosa com detector de ionização de chama, índice de acidez, índice de saponificação e índice de iodo de acordo com as metodologias propostas pela Amerian Oil Chemists Society e foram obtidos os espectros na região do infravermelho médio utilizando-se a espectroscopia no infravermelho com transformada de Fourier. A partir dessas análises obteve-se, portanto, três tabelas de dados (cromatográficos, físico-químicos e espectroscópicos) que, por sua vez, foram submetidos à análise estatística. Análise de componentes comuns e pesos específicos foi aplicada às tabelas de dados para discriminação e avaliação da qualidade das amostras. Amostras apresentaram índice de acidez e saponificação elevado em relação a outros estudos. Óleos de soja, milho e girassol possuem maior teor de ácidos graxos polinsaturados, principalmente ácido linoleico em sua composição, enquanto óleos de canola e azeites de oliva extra virgens apresentam maior teor de ácidos graxos monoinsaturados como ácido oleico. A espectroscopia no infravermelho médio permitiu observar a presença de bandas intensas de absorção demonstrando a presença de grupamentos específicos de ácidos orgânicos como estiramento de carbonos unidos por ligações duplas como isômeros cis, metil e metileno, bandas relacionadas à carbonilas dos triacilgliceróis e ausência de ácidos graxos trans por não apresentarem absorções em 3025 e 968 cm-1. A partir da análise de componentes comuns e pesos específicos foi possível separar os dados em três dimensões comuns contendo 56,44, 34,74 e 8,77% da variância dos dados, as quais foram influenciadas majoritariamente pelas análises cromatográficas, físico-químicas e espectroscópicas, respectivamente. De acordo com o perfil de agrupamento das amostras foi possível realizar a discriminação das amostras em relação às matrizes de extração e observado ausência de adulterações. Cromatografia gasosa foi essencial na discriminação das amostras, análises físico-químicas na avaliação da qualidade enquanto os dados espectroscópicos apresentaram baixa influência nos dados, não colaborando efetivamente para a discriminação das amostras. Por fim, análise de componentes comuns e pesos específicos pode ser aplicada de forma eficaz na discriminação de óleos vegetais. / Ensure the quality of food products such as vegetable oils have great importance to industry and researches related to food. Vegetable oils can have their composition adulterated or suspected due to the presence of other oils with lower commercially value. In addition, problems related to preservation during storage as the development of short chain and free fatty acids can be initiated by degradation processes like rancidity. Alterations in composition can be detected by the use of chromatography while titrimetric techniques assists in the verification of stability during storage. These techniques combined to spectrocopy and multivariate statistical methods allow determine the quality and realize the discrimination of vegetable oils. 38 samples of vegetable oils were used being: 10 soybean, 6 corn, 6 sunflower, 6 canola, 9 extra virgin olive oil and 1 mixed canola and soybean oil. It was obtained the fatty acid composition using gas chromatography (GC-FID), acid, saponification and iodine value according to American Oil Chemists Society methods and the spectra in the mid-infrared region were obtained using Fourier transform infrared spectroscopy. From these analyses it was obtained three data tables (chromatographic, physicochemical and spectrocopic) that, in its turn, were submitted to statistical analysis. Common components and specific weights analysis were applied to the data tables to discrimination and evaluation of the quality of samples. Samples presented acid and saponification values high in relation to other studies. Soybean, corn and sunflower oil have higher contend in polyunsaturated fatty acid, mainly linoleic acid in their composition while canola and extra virgin olive oils presented higher amount of monounsaturated fatty acids as oleic acid. The mid-infrared spectrocopy permitted observe the presence of intense absorption bands demonstrating the presence of specific groups of organic acids like carbon stretch united by double bonds with cis isomers, methyl and methylene, bands related to carbonyls of triacylglycerols and the absence of trans isomers by not present absorptions in 3025 and 968 cm-1. From common components and specific weights analysis was possible separate data in three common dimensions containing 56,44, 34,74 and 8,77% of the data variance which were influenced mainly by chromatographic, physicochemical and spectroscopy analyses, respectivetly. According to the cluster profile of the samples was possible to realize the discrimination of the samples in relation to the extraction matrices and it was observed the absence of adulterations. Gas chromatography was essential to the discrimination and physicochemical analyses to the evaluation of the quality of the samples while the spectrocopic data presented low influence to the data, not contributing effectively to the discrimination of the samples. At last, common components and specific weichts analysis can be applyed efficiently to discrimination of vegetable oils.
14

Aplicação de técnicas analíticas instrumentais e físio-químicas com quimioterapia para avaliação da qualidade e discriminação de óleos vegetais e azeites de oliva extra virgem / Application of instrumental analytical and physicochemical techniques with chemometrics for evaluation of the quality and discrimination of vegetable oils

Ferreira, Maresa Custodio Molinari 19 February 2016 (has links)
CAPES / Garantir a qualidade de produtos alimentícios como óleos vegetais é de grande importância para indústrias e pesquisas relacionadas à área de alimentos. Óleos vegetais podem ter sua composição adulterada ou suspeita devido à presença de outros óleos de menor valor comercial. Além disso, problemas relacionados à conservação durante o armazenamento, como, o desenvolvimento de ácidos graxos de cadeia curta e ácidos graxos livres, podem ser desencadeados por processos de degradação. Alterações na composição de óleos podem ser detectadas a partir do uso de cromatografia, enquanto técnicas titulométricas como índice de acidez e saponificação auxiliam na verificação da estabilidade durante a cadeia de distribuição e consumo. Essas técnicas aliadas à espectroscopia e a métodos de análise estatística multivariada permitem, portanto, determinar a qualidade e realizar a discriminação de óleos vegetais. Foram utilizadas 38 amostras de óleos vegetais sendo: 10 de óleo de soja, 6 de milho, 6 de girassol, 6 de canola, 9 azeites de oliva extra virgem e 1 óleo misto de soja e canola. Foram obtidas as composições em ácidos graxos utilizando-se cromatografia gasosa com detector de ionização de chama, índice de acidez, índice de saponificação e índice de iodo de acordo com as metodologias propostas pela Amerian Oil Chemists Society e foram obtidos os espectros na região do infravermelho médio utilizando-se a espectroscopia no infravermelho com transformada de Fourier. A partir dessas análises obteve-se, portanto, três tabelas de dados (cromatográficos, físico-químicos e espectroscópicos) que, por sua vez, foram submetidos à análise estatística. Análise de componentes comuns e pesos específicos foi aplicada às tabelas de dados para discriminação e avaliação da qualidade das amostras. Amostras apresentaram índice de acidez e saponificação elevado em relação a outros estudos. Óleos de soja, milho e girassol possuem maior teor de ácidos graxos polinsaturados, principalmente ácido linoleico em sua composição, enquanto óleos de canola e azeites de oliva extra virgens apresentam maior teor de ácidos graxos monoinsaturados como ácido oleico. A espectroscopia no infravermelho médio permitiu observar a presença de bandas intensas de absorção demonstrando a presença de grupamentos específicos de ácidos orgânicos como estiramento de carbonos unidos por ligações duplas como isômeros cis, metil e metileno, bandas relacionadas à carbonilas dos triacilgliceróis e ausência de ácidos graxos trans por não apresentarem absorções em 3025 e 968 cm-1. A partir da análise de componentes comuns e pesos específicos foi possível separar os dados em três dimensões comuns contendo 56,44, 34,74 e 8,77% da variância dos dados, as quais foram influenciadas majoritariamente pelas análises cromatográficas, físico-químicas e espectroscópicas, respectivamente. De acordo com o perfil de agrupamento das amostras foi possível realizar a discriminação das amostras em relação às matrizes de extração e observado ausência de adulterações. Cromatografia gasosa foi essencial na discriminação das amostras, análises físico-químicas na avaliação da qualidade enquanto os dados espectroscópicos apresentaram baixa influência nos dados, não colaborando efetivamente para a discriminação das amostras. Por fim, análise de componentes comuns e pesos específicos pode ser aplicada de forma eficaz na discriminação de óleos vegetais. / Ensure the quality of food products such as vegetable oils have great importance to industry and researches related to food. Vegetable oils can have their composition adulterated or suspected due to the presence of other oils with lower commercially value. In addition, problems related to preservation during storage as the development of short chain and free fatty acids can be initiated by degradation processes like rancidity. Alterations in composition can be detected by the use of chromatography while titrimetric techniques assists in the verification of stability during storage. These techniques combined to spectrocopy and multivariate statistical methods allow determine the quality and realize the discrimination of vegetable oils. 38 samples of vegetable oils were used being: 10 soybean, 6 corn, 6 sunflower, 6 canola, 9 extra virgin olive oil and 1 mixed canola and soybean oil. It was obtained the fatty acid composition using gas chromatography (GC-FID), acid, saponification and iodine value according to American Oil Chemists Society methods and the spectra in the mid-infrared region were obtained using Fourier transform infrared spectroscopy. From these analyses it was obtained three data tables (chromatographic, physicochemical and spectrocopic) that, in its turn, were submitted to statistical analysis. Common components and specific weights analysis were applied to the data tables to discrimination and evaluation of the quality of samples. Samples presented acid and saponification values high in relation to other studies. Soybean, corn and sunflower oil have higher contend in polyunsaturated fatty acid, mainly linoleic acid in their composition while canola and extra virgin olive oils presented higher amount of monounsaturated fatty acids as oleic acid. The mid-infrared spectrocopy permitted observe the presence of intense absorption bands demonstrating the presence of specific groups of organic acids like carbon stretch united by double bonds with cis isomers, methyl and methylene, bands related to carbonyls of triacylglycerols and the absence of trans isomers by not present absorptions in 3025 and 968 cm-1. From common components and specific weights analysis was possible separate data in three common dimensions containing 56,44, 34,74 and 8,77% of the data variance which were influenced mainly by chromatographic, physicochemical and spectroscopy analyses, respectivetly. According to the cluster profile of the samples was possible to realize the discrimination of the samples in relation to the extraction matrices and it was observed the absence of adulterations. Gas chromatography was essential to the discrimination and physicochemical analyses to the evaluation of the quality of the samples while the spectrocopic data presented low influence to the data, not contributing effectively to the discrimination of the samples. At last, common components and specific weichts analysis can be applyed efficiently to discrimination of vegetable oils.

Page generated in 0.0661 seconds