• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 167
  • 167
  • 83
  • 37
  • 23
  • 20
  • 20
  • 19
  • 17
  • 15
  • 14
  • 14
  • 14
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Seasonal Variation of Milk in Central Valley California and the Association of Milk Variation with the Composition and Texture of Low Mositure Part Skim Mozzarella

Jai, Vaideki 01 December 2014 (has links) (PDF)
The chemical composition of milk (specifically casein, fat, and calcium) is known to affect the quality and functional properties of Mozzarella cheese. Therefore, concentrations of total nitrogen, casein nitrogen, non-casein nitrogen, non-protein nitrogen, true nitrogen, casein nitrogen to total nitrogen ratio, casein nitrogen to true nitrogen ratio, fat, total calcium, total solids, somatic cells, and pH were measured in silo milk samples collected weekly over 18-months from a large dairy plant in Central Valley, California from July 2008 to December 2009 to verify changes and correlate to low moisture part skim Mozzarella (LMPS) characteristics. LMPS mozzarella cheese from the same plant was also collected biweekly during the same period and analyzed five days post manufacture for total nitrogen, water soluble nitrogen, total calcium, water soluble calcium, salt, pH, fat in dry matter and total solids and texture properties (i.e., hardness (g), cohesiveness, springiness, chewiness (g), aggregation index (AGI), and percentage cheese loss during shredding). Significant seasonal variations of total nitrogen, non-protein nitrogen, casein nitrogen, casein nitrogen to total nitrogen ratio, casein nitrogen to true nitrogen ratio, and total calcium in milk were explained using a linear model equivalent to a basic single cosinor model with sine and cosine of week (converted into radians) as predictors. Correlation studies were done between milk composition and cheese composition, milk composition and cheese textural characteristics as well as cheese composition and cheese texture, showing that concentration of total calcium and nitrogen fractions in cheese milk significantly affected the texture and composition of LMPS mozzarella. Also, the cheese total nitrogen, total calcium and water soluble calcium affected the cheese texture. The LMPS Mozzarella that was firmer and more cohesive had less loss during shredding and aggregated to a lesser extent. The milk total nitrogen, non-protein nitrogen, casein nitrogen, casein to total protein ratio, casein to true protein ratio, and total calcium had positive correlation with each other. However, the milk non-casein nitrogen did not significantly correlate with other nitrogen fractions and total calcium of milk. In addition, there was a significant increase of water soluble nitrogen, percent loss in shredding and aggregation index, and a significant decrease of hardness, and chewiness of LMPS Mozzarella ripened at 8.90 C in comparison to the cheese ripened at 3.30 C for 21 days.
162

The Glycemic Response Elicited by Oat β-glucan Solutions and Hard Gel Varying in Physiochemical Properties and Food Form

Kwong, Melissa Gaa-Yee 19 March 2013 (has links)
The ability of the soluble fibre (1->3)(1->4)-β-D-glucan to attenuate postprandial glycemic responses depends on its viscosity which, in turn, depends on molecular weight (MW) and dose. However, the effect of altering viscosity by changing solution volume is unknown. Furthermore, β-glucan solutions may form hard gels when left to age, but the effect of these gels on glycemic responses is unknown. Therefore, the effects of varying the MW and volume of β-glucan solutions and hard gels, on glycemic responses were determined. The results showed that glycemic responses were reduced by increasing viscosity by increasing MW but not by reducing solution volume. Although β-glucan gels reduced the rate of glucose diffusion in vitro, they had no effect on glycemic responses in vivo. Thus, changing solution viscosity through changes in volume does not alter the effect of β-glucan on glycemic response, and β-glucan gels are ineffective at attenuating in vivo glycemic responses.
163

The Glycemic Response Elicited by Oat β-glucan Solutions and Hard Gel Varying in Physiochemical Properties and Food Form

Kwong, Melissa Gaa-Yee 19 March 2013 (has links)
The ability of the soluble fibre (1->3)(1->4)-β-D-glucan to attenuate postprandial glycemic responses depends on its viscosity which, in turn, depends on molecular weight (MW) and dose. However, the effect of altering viscosity by changing solution volume is unknown. Furthermore, β-glucan solutions may form hard gels when left to age, but the effect of these gels on glycemic responses is unknown. Therefore, the effects of varying the MW and volume of β-glucan solutions and hard gels, on glycemic responses were determined. The results showed that glycemic responses were reduced by increasing viscosity by increasing MW but not by reducing solution volume. Although β-glucan gels reduced the rate of glucose diffusion in vitro, they had no effect on glycemic responses in vivo. Thus, changing solution viscosity through changes in volume does not alter the effect of β-glucan on glycemic response, and β-glucan gels are ineffective at attenuating in vivo glycemic responses.
164

A Multidisciplinary Approach to Food Safety Evaluation: Hummus Spoilage and Microbial Analysis of Kitchen Surfaces in Residential Child Care Institutions (rcci) in Massachusetts, U.S.A.

Hagan, Elsina E. 01 January 2011 (has links) (PDF)
Food borne illnesses continues to be a public health challenge in the United States (U.S.); an estimated 9.4 million incident cases occurred in 2011. In view of this challenge we conducted two food safety studies; 1) related to product formulation (hummus spoilage challenge study) and 2) evaluating the microbial safety of domestic kitchen surfaces in Residential Child Care Institutions (RCCI pilot study). Hummus is of Mediterranean origin but is currently eaten globally. This challenge study evaluates a variety of industrial hummus formulations (four in total, differing in pH and/or addition of a preservative (natamycin). Two batches were setup: batch 1; aseptically inoculated hummus with 100 CFU/g fungal isolates and batch 2; uninoculated hummus. Samples of both hummus batches were stored at both 20oC (10 days accelerated testing) and 4oC (84 days recommended temperature testing). Inoculated samples were analyzed for fungus, whiles both fungi and bacteria (standard plate count (SPC) and Lactococci) counts were done for uninoculated samples. Results indicate that accelerated testing inaccurately predicts fungal growth at 4oC in hummus, also fungal growth inhibition requires a pH ≤ 4.0 ± 0.2 and refrigeration. Limited studies have specifically evaluated the prevalence of pathogenic bacteria in domestic kitchens in the U.S, for this reason we assessed the microbial safety of 6 RCCI locations in MA. Fifteen key food contact surfaces and dish washing sponges, if available at each RCCI facility were assessed for SPC, yeast and molds, total coliform and E. coli, Listeria sp and Salmonella sp. Microbiological assessments were conducted preceding and after a hazard analysis and critical control point (HACCP) food safety training and implementation at each location. Microbial growth varied by surface for each type of microorganism, wet surfaces had higher most probable number (MPN) counts. Compared to dry surfaces, wet surfaces had significantly higher mean total coliform counts. For both E. coli and total coliform, microbial load differed significantly by surfaces sampled (P = 0.0323 and 0.014) respectively. The surface and training interaction effect was highly significant for only E. coli (P = 0.0089). Training overall had no significant effect on reducing the microbial load on kitchen surfaces.
165

Implementing food science-based instruction in career technical education courses

Hendrix, Jasmine D 10 December 2021 (has links) (PDF)
Students are exposed to food concepts in agriculture-based career technical education (CTE) courses which provide a gateway for students to become more aware of food science career pathways. Professional development for Mississippi (MS) CTE teachers is needed to effectively implement food science-based instruction since there is not a food science curriculum framework adopted in MS. The objective of this study was to assess a food science professional development training for MS CTE teachers that would increase their self-perceived knowledge of food science, self-perceived ability to conduct food science skills, and their self-efficacy to implement food science-based instruction. Thirty-one teachers participated in a 2-h professional development (PD) training that provided teachers an experiential learning opportunity to learn and apply food science concepts. Results indicated that the food science PD training was effective at increasing teachers’ self-perceived knowledge and ability to conduct food science skills. Post training, more than 77% of the participating teachers were more confident in their ability to teach food science concepts. Overall, teachers were satisfied with the food science PD training. After participating in the food science PD training, teachers were asked to implement food science-based instruction in their CTE courses. A pilot test was conducted to examine MS CTE teachers’ (N=4) perception of implementing food science-based instruction that was provided to them. Post implementation, each teacher participated in a semi-structured interview to capture each teacher’s detailed experience pertaining to the implementation of the food science-based instruction. A conventional content analysis was used to analyze teacher responses. Research findings indicated that MS CTE teachers were interested in teaching food science to increase student knowledge of food science and to enhance student performance on the Future Farmers of America food science career development event. All teachers noted that they had a positive experience implementing the food science toolkit and that they intend to use the food science-based instruction in the future. MS CTE teachers perceived that the food science toolkit increased student exposure to, engagement in, and interest in food science academic and career pathways.
166

DESIGN AND FABRICATION OF FLEXIBLE SENSORS FOR SINGLE-USE APPLICATIONS

Aiganym Yermembetova (13954878) 13 October 2022 (has links)
<p>The development of reliable, robust and low-cost sensor devices is growing in importance and an ongoing challenge. From environmental monitoring and household safety to food and biopharmaceutical industries, the necessity for specific analyte detection is crucial. Over the years researchers have come up with myriad materials that can be used for efficient sensing devices. The materials employed are governed by application and performance criteria as well as the sensing mechanism, which might be based on physical or chemical principles. In this thesis, two different types of electrochemical sensor technologies were examined with special attention paid to the application of the devices, the materials used, and their feasibility for scalable manufacturing.</p> <p>In the first study, binary mixtures of conducting and semiconducting nanomaterials were explored as promising candidates for the manufacturing of low-cost ethylene sensor on flexible substrates. Ethylene (C2H4) is a small plant hormone which has been shown to affect the growth and senescence of flowers, leaves and fruits. Currently available devices have demonstrated high ethylene sensitivities with great potential for technology size reduction; however, some are not practical for use outside of the laboratory, lack portability, or require more research to demonstrate their reproducibility and stability in different environments, as well as selectivity to C2H4 in large-scale applications. Conductometric gas sensors based on a combination of carbon nanotubes (CNTs) and exfoliated molybdenum disulfide (MoS2) coated with molecular receptors is demonstrated for the selective detection of ethylene, including details on materials preparation, manufacturing, and characterization. Mixtures of CNTs and exfoliated MoS2 were deposited onto screen-printed interdigitated electrodes on plastic substrates, with optimization for scalable and continuous manufacturing by roll-to-roll methods. C2H4 detection levels of 0.1 ppm were readily achieved with responses on the second timescale.</p> <p>The second sensor technology shows how thin-film potentiometric electrodes based on ion-selective membranes can be designed to tolerate sterilizing radiation while providing excellent performance and signal stability. This sensor's development was motivated by the expanding need for single-use bioreactor systems in the biopharmaceutical industry, which require strict control over cell culture conditions for several weeks or more. Until recently, critical analysis has been conducted mostly by offline or “at-line” sampling of aliquots withdrawn from the sterile bioreactor. The latter is inefficient and can increase the risk of contamination. Inspired by the challenges related to cost, integration and performance following irradiation a potentiometric pH electrode was developed, intended for single-use applications. It was shown to be radiation-tolerant while providing reliable data comparable to a commercial pH meter over a period of three months. The electrodes exhibited quasi-linear signal drifts of +0.28 mV/day or 0.005 pH units/day. Thin-film γ-irradiated electrodes could provide accurate pH readings in sterilized culture media using a single-point calibration, within 0.07 pH units of a commercial meter with glass electrode and daily calibration. Furthermore, to advance the development of market-ready sensors past the conceptual stage, a few automated processes for scalable membrane deposition were investigated.</p>
167

3D SOFT MATERIAL PRINTER FOR IN-SPACE MANUFACTURING EXPERIMENT

Albert john Patrick IV (15304819) 04 June 2024 (has links)
<p>    </p> <p>Additive manufacturing (or 3D printing) is one of the manufacturing processes which is currently being explored for its applicability under space boundary conditions, also known as in-space manufacturing. The space boundary conditions specifically affect material properties which in turn affect the printability of materials in space. Printing of soft materials in space is a novel application and the intent of this research was to print the softest of materials: edible materials, as a case study. 3D food printing is a novel food delivery method of using food products to either reproduce as a more aesthetically pleasing product or to print more nutrient-diverse foods. Launch of payload carrier and the boundary conditions of low Earth orbit including a vacuum environment, microgravity, temperature fluctuations, etc. These conditions make printing difficult, and my thesis is to overcome the boundary conditions (except microgravity) using a 3D soft material printer operating within a CubeSat. A CubeSat is a small satellite usually launched as an auxiliary payload used for basic Earth observation and radio communication. The printer must be able to survive launch and operation conditions, print within a simulated space environment, and adhere to the American Society for Testing and Materials (ASTM) specific definition of additive manufacturing. The 3D soft material printer was designed, fabricated, and tested using space and CubeSat boundary conditions for determining optimal design. Testing conditions including: (1) printing under Earth conditions showing it follows ASTM standards, (2) surviving NASA standards for vibration testing for microsatellites under launch conditions, (3) completing a print under a vacuum setting. The results of the testing would prove a small microsatellite could print in the vacuum of space and survive launch parameters. Further work would provide insight into the design of food printers being readily available in smaller sizes and its operability in microgravity condition. </p>

Page generated in 0.1963 seconds