Spelling suggestions: "subject:"force"" "subject:"sorce""
381 |
Microbial adhesion to medical implant materials an atomic force microscopy study.Emerson, Ray Jenkins. January 2004 (has links)
Thesis (M.S.)--Worcester Polytechnic Institute. / Keywords: implant; medical; atomic force microscopy; fungi; bacteria. Includes bibliographical references (p. 82-100).
|
382 |
Variable-temperature scanning tunneling microscopy studies of atomic and molecular level surface phenomena on semiconductor and metal surfaces /Fitts, William Patrick, January 2001 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2001. / Vita. Includes bibliographical references (leaves 337-351). Available also in a digital version from Dissertation Abstracts.
|
383 |
The subseismic boundary layer in long period core dynamicsBaker, Ross Eugene. January 2000 (has links)
Thesis (M. Sc.)--York University, 2000. Graduate Programme in Physics and Astronomy. / Typescript. Includes bibliographical references (leaves 59-61). Also available on the Internet. MODE OF ACCESS via web browser by entering the following URL: http://wwwlib.umi.com/cr/yorku/fullcit?pMQ67758.
|
384 |
Jovian orbit capture and eccentricity reduction using electrodynamic tether propulsionSchadegg, Maximilian Michael 29 April 2014 (has links)
The use of electrodynamic tethers for propulsion and power generation is attractive for missions to the outer planets, which are traditionally handicapped by large propellant requirements, large times of flight, and a scarcity of power available. The proposed electrodynamic tether propulsion scheme is shown to be capable at reducing or eliminating these mission constraints. In this work, the orbital dynamics of a spacecraft using electrodynamic tether propulsion during the mission phases of capture, apojove pump-down and perijove pump-up in the Jovian system are investigated.
The main result is the mapped design space involving mission duration, tether length and minimum perijove radius. Phase-free flyby sequences and bang-bang control laws are also included, which provide performance upper bounds for a given mission architecture. It is found to be advantageous to utilize in-bound only flybys of the Galilean moons during capture, and few, if any, out-bound only flybys during apojove pump-down. The electrodynamic tether system is also shown to be capable of lowering the spacecraft’s orbit to a Europa-Ganymede Hohmann orbit with a total flight time after entering Jupiter’s sphere of influence of just under two years. The benefits of leveraging solar third body perturbations, ballistic flyby tours, and adding a secondary propulsion system are also considered. / text
|
385 |
Studies of biofilm development by advanced microscopic techniques and high-throughput sequencingChao, Yuanqing., 晁元卿. January 2013 (has links)
This study was conducted to investigate the biofilm formation by using advanced microscopic and high-throughput sequencing techniques. The major tasks were (1) to quantitatively evaluate the initial bacterial attachment processes by Atomic Force Microscopy (AFM); (2) to characterize the chemical variation during biofilm formation by Raman microscopy; (3) to analyze the microbial structure and functions in the wastewater and drinking water biofilms by metagenomic analysis.
To determine the lateral detachment force for bacteria, a quantitative method using contact mode of AFM was developed. The established method had good repeatability and sensitivity to various bacteria and substrata, and was applied to evaluate the roles of bacterial surface polymers in Phase I and II attachment, i.e. lipopolysaccharides, type 1 fimbria and capsular colanic acid. The results indicated lipopolysaccharides largely enhanced Phases I and II attachment. Fimbriae increased Phase I attachment but not significantly influence the adhesion strength in Phase II. Moreover, colanic acid had negative effect on attachment in both of Phases I and II.
Surface-enhanced Raman scattering was applied to evaluate the chemical components in the biofilm matrix at different growth phases, including initial attached bacteria, colonies and mature biofilm. Three model bacteria, including Escherichia coli, Pseudomonas putida, and Bacillus subtilis, were used to cultivate biofilms. The results showed that the content of carbohydrates, proteins, and nucleic acids in biofilm matrix increased significantly along with the biofilm growth of three bacteria judging from the intensities and appearance probabilities of related marker peaks in the spectra. The content of lipids, however, only increased in the Gram-negative biofilms.
Moreover, metagenomic data, coupled with PCR-based 454 pyrosequencing reads, were generated for activated sludge and biofilm from a full-scale hybrid reactor to study the microbial taxonomic and functional differences/connections between activated sludge and biofilm. The results showed that the dominant bacteria co-existed in two samples. Global functions in activated sludge and biofilm metagenomes showed quite similar pattern, revealing the limited differences of overall functions existed in two samples. For nitrogen removal, the diversity and abundance of nitrifiers and denitrifiers in biofilm did not surpass that in activated sludge. Whilst, higher abundances of nitrification and denitrification genes were indeed found in biofilm, suggesting the increased nitrogen removal by applying biofilm might be attributed to removal efficiency rather than biomass accumulation of nitrogen removal bacteria.
To investigate the bacterial structure and functions of drinking water biofilm, PCR-based 454 pyrosequencing of 16S rRNA gene and Illumina metagenomic data were generated and analyzed. Significant differences of bacterial diversity and taxonomic structure were found between biofilms formed on stainless steel and plastics. Moreover, ecological succession could be obviously observed during biofilm formation. The metabolic network analysis for drinking water biofilm constructed for the first time. Moreover, the occurrence and abundance of specific genes involving in the bacterial pathway of glutathione metabolism and production/degradation of extracellular polymeric substances were also evaluated. / published_or_final_version / Civil Engineering / Doctoral / Doctor of Philosophy
|
386 |
On the use of generalized force data for kinematically controlled manipulatorsSchroeder, Kyle Anthony 16 February 2011 (has links)
The Department of Energy national laboratories, like Los Alamos National Lab or Sandia National Lab, perform work on radioactive and chemically dangerous materials. Gloveboxes are often used to shield workers from these hazards, but they cannot completely eliminate the danger and often create new safety concerns due to reduced operator dexterity and ergonomic posture. When feasible, robots can be employed to remove the human from the radioactive hazard; allowing them to analyze the situation and make decisions remotely.
Force sensor data from the manipulator can be used to simplify the control of these remote systems as well as make them more robust. Much research has been done to develop force and torque control algorithms to introduce compliance or detect collisions. Many of these algorithms are very complicated and currently only implemented in research institutions on torque-controlled manipulators. The literature review discusses many such controllers which have been developed and/or demonstrated. This thesis reviews, develops, and demonstrates several beneficial algorithms which can be implemented on commercially-available kinematically-controlled robots using commercially-available sensors with a reasonable investment of time.
Force data is used to improve safety and manage contact forces while kinematically controlling the robot, as well as improve the world model. Safety is improved by detecting anomalous and/or excessive forces during operation. Environmental modeling data is inferred from position and/or force data. A six-axis sensor and joint torque sensors on 2 7DOF manipulators are used to demonstrate the proposed algorithms in two DOE relevant applications: remotely opening an incompletely modeled cabinet door and moving a robot in a confined space. / text
|
387 |
Determination of the architecture of ion channels by atomic force microscopyStewart, Andrew Paul January 2013 (has links)
No description available.
|
388 |
Using a magnetic force microscope to design nanomagnetic systemsRawlings, Colin Donald January 2013 (has links)
No description available.
|
389 |
Probing protein-lipid interactions using atomic force microscopySuresh, Swetha January 2011 (has links)
No description available.
|
390 |
The free energy of auric oxide as determined from electromotive force measurementsRoseveare, William Earl, 1904- January 1926 (has links)
No description available.
|
Page generated in 0.0426 seconds