Spelling suggestions: "subject:"forcing _mechanisms"" "subject:"forcing bmechanisms""
1 |
Quarterdiurnal Tide in the Middle AtmosphereGeißler, Christoph 27 April 2021 (has links)
In der mittleren und oberen Atmosphäre spielen atmosphärische solare Gezeiten eine wichtige Rolle für die Dynamik und den Vertikaltransport von Energie und Impuls aus der Stratosphäre. Angeregt werden sie primär durch Absorption solarer Strahlung in der Troposphäre und Stratosphäre. Dabei entsprechen die Perioden der solaren Gezeiten den harmonischen Anteilen der täglichen Variation solarer Strahlung. Mittlerweile sind die täglichen, halbtägigen und dritteltägigen Gezeiten relativ gut erforscht, was bei der vierteltägigen Gezeit nicht der Fall ist. Die Informationen über diese Gezeit sind bislang rudimentär vor allem bzgl. einer globalen Klimatologie als auch der Details über möglichen Anregungsmechanismen und Wechselwirkungen. Dies ist darauf zurückzuführen, dass die Amplituden sehr klein sind und eine hohe zeitliche Auflösung für die Analyse benötigt wird. Die vierteltägige Gezeit wurde bislang von bodengebundenen Instrumenten und mit
Fernerkundungsgsmethoden beobachtet, welche bislang lediglich einen räumlich und zeitlich begrenzten Überblick über die vierteltägige Gezeit boten. Da es nicht möglich ist die Beiträge der einzelnen Anregungen zu messen, muss sich numerischer Modelle als mächtiges Werkzeug bedient werden. Mit numerischen Modellen ist es möglich die verschiedenen Anregungsmechanismen zu separieren und ihre Beiträge für die vierteltägige Gezeit zu analysieren. Modellstudien lieferten bislang kein umfassendes Bild der QDT und berücksichtigten auch keine vierteltägige Schwerwellenanregungen. Diese Arbeit soll das Wissen zu diesem Thema erweitern, indem ein nichtlineares, mechanistisches, globales Zirkulationsmodell genutzt wird. Es wird eine umfassende numerische Studie durchgeführt, um die Wichtigkeit und das Zusammenspiel der drei vierteltägigen Anregungsmechanismen zu untersuchen, das sind die direkte solare Anregung, nichtlineare Wechselwirkung zwischen Gezeiten und Schwerewellen-Gezeiten-Wechselwirkungen. Erstmalig werden Anregungsterme, die über die Erwärmungsraten hinausgehen, selbst analysiert und quantifiziert
und die Wechselwirkungen der vierteltägigen Gezeiten aus den unterschiedlichen Quellen untersucht. Darüber hinaus werden verschiedene Gezeitenmoden untersucht, um Interaktionen der vierteltätigen Gezeit aus den unterschiedlichen Anregungsmechanismen zu identifizieren. Darüber hinaus werden mit Hilfe der theoretischen Hough-Moden diejenigen Moden der vierteltägigen Gezeit abgeleitet, die in den Modellsimulationen maßgeblich für die meridionale Struktur verantwortlich sind. Diese aufwändige und umfassende Modellstudie analysiert die Anregungsmechanismen und deren Interaktion der vierteltägigen Gezeit. Die Arbeit hilft somit das Verständnis über die Wellenausbreitung der mittleren Atmosphäre auf ein neues Niveau zu heben.:1. Tides in the Middle Atmosphere - An Introduction
2. Quarterdiurnal Solar Tides
2.1. Forcing of Quarterdiurnal Tides
2.1.1. Overview of the different Forcing Mechanisms
2.1.2. Theoretical Consideration of the Nonlinear Forcing Mechanism
2.2. Observations and Model Study of the QDT
2.3. Summary and Outlook
3. The Middle and Upper Atmosphere Model (MUAM)
3.1. Introduction
3.2. Numerical Properties
3.3. Model Physics
3.4. Parameterizations
3.5. Background Climatology
4. Mathematical and Numerical Methods
4.1. Fast Fourier Transform
4.2. Harmonic Analysis
5. MUAM: Sensitivity Studies
5.1. Influence of Horizontal Resolution on the Background Climatology and
QDT amplitudes
5.2. Influence of the Initial Conditions on the Background Climatology and
QDT amplitudes
5.3. Influence of temporal resolution on the Background Climatology and QDT
amplitudes
6. MUAM: Climatology of the Quarterdiurnal Tide
6.1. Amplitudes
6.2. Phases and Vertical Wavelengths
6.3. QDT reconstruction with Hough modes
7. MUAM: The Quarterdiurnal Tide Forcing Mechanisms
7.1. The Quarterdiurnal Forcing Terms
7.2. Model Experiments and Single Forcing Mechanisms
7.2.1. The Solar Forcing
7.2.2. The Gravity Wave Forcing
7.2.3. The Nonlinear Forcing
7.2.4. No Gravity Wave Forcing
7.2.5. No Nonlinear Forcing
7.3. Hough modes in Model experiments
7.3.1. SOL Hough modes
7.3.2. GW Hough modes
7.3.3. NLIN Hough modes
7.3.4. Hough modes: Seasonal cycle
7.4. Nonlinear Tidal Interactions
7.4.1. Model run without SDT/SDT interaction
7.4.2. Model run without DT/TDT interaction
7.4.3. Model run without tide-tide interaction
7.5. Solar Tidal Interactions
7.6. Interactions of Different Forcing Mechanisms
7.6.1. Interaction between Nonlinear and Solar Forcing
7.6.2. Interaction between Gravity wave and Solar Forcing
7.7. Influence of Enhanced Forcing Mechanisms
7.7.1. Influence of Enhanced Solar Forcing Mechanisms
7.7.2. Influence of Enhanced Gravity Wave Forcing Mechanisms
7.7.3. Influence of Enhanced Nonlinear Forcing Mechanisms
8. Summary and Conclusion
9. Outlook / In the middle and upper atmosphere atmospheric solar tides play an important role in the dynamics and vertical transport of energy and momentum from the stratosphere. They are primarily excited by absorption of solar radiation in the troposphere and stratosphere. The periods of the solar tides correspond to the harmonic components of the daily variation of solar radiation. Meanwhile, the diurnal, semidiurnal and terdiurnal tides have been relatively well studied, which is not the case with the quarterdiurnal tide. The knowledge about this tide is so far rudimentary, especially with regard to global climatology and details of possible excitation mechanisms and interactions. This is due to the fact that the amplitudes are very small and a high temporal resolution is required for the analysis. The quarterdiurnal tide has been observed by ground-based instruments and remote sensing methods, which until now have only provided a spatially and temporally limited overview of the quarterdiurnal tide. Since it is not possible to measure the contributions of the individual excitations, numerical models must be used as a powerful tool. With the numerical models it is possible to separate the different excitation mechanisms and to analyse their contributions for the quarterdiurnal tide. Model studies so far did not provide a comprehensive picture of QDT and did not consider QDT gravity wave excitation. This work is intended to extend the knowledge on this topic by using a nonlinear, mechanistic, global circulation model. A comprehensive numerical study will be carried out to investigate the importance and the interaction of the three quarterdiurnal excitation mechanisms, i.e. direct solar excitation, nonlinear tidal interactions and gravity wave tidal interactions. For the first time, excitation terms beyond the heating rates will be analyzed and quantified and the interactions of the quarterdiurnal tides from different
sources will be investigated. Furthermore, different tidal modes will be investigated to identify quarterdiurnal tide interactions from the different excitation mechanisms. Furthermore, the theoretical Hough modes are used to derive those quarterdiurnal modes that are significantly responsible for the meridional structure in the model simulations. This elaborate and comprehensive model study analyses the excitation mechanisms and their interaction of the quarter-day tide. The work thus helps to raise the understanding of wave propagation in the middle atmosphere to a new level.:1. Tides in the Middle Atmosphere - An Introduction
2. Quarterdiurnal Solar Tides
2.1. Forcing of Quarterdiurnal Tides
2.1.1. Overview of the different Forcing Mechanisms
2.1.2. Theoretical Consideration of the Nonlinear Forcing Mechanism
2.2. Observations and Model Study of the QDT
2.3. Summary and Outlook
3. The Middle and Upper Atmosphere Model (MUAM)
3.1. Introduction
3.2. Numerical Properties
3.3. Model Physics
3.4. Parameterizations
3.5. Background Climatology
4. Mathematical and Numerical Methods
4.1. Fast Fourier Transform
4.2. Harmonic Analysis
5. MUAM: Sensitivity Studies
5.1. Influence of Horizontal Resolution on the Background Climatology and
QDT amplitudes
5.2. Influence of the Initial Conditions on the Background Climatology and
QDT amplitudes
5.3. Influence of temporal resolution on the Background Climatology and QDT
amplitudes
6. MUAM: Climatology of the Quarterdiurnal Tide
6.1. Amplitudes
6.2. Phases and Vertical Wavelengths
6.3. QDT reconstruction with Hough modes
7. MUAM: The Quarterdiurnal Tide Forcing Mechanisms
7.1. The Quarterdiurnal Forcing Terms
7.2. Model Experiments and Single Forcing Mechanisms
7.2.1. The Solar Forcing
7.2.2. The Gravity Wave Forcing
7.2.3. The Nonlinear Forcing
7.2.4. No Gravity Wave Forcing
7.2.5. No Nonlinear Forcing
7.3. Hough modes in Model experiments
7.3.1. SOL Hough modes
7.3.2. GW Hough modes
7.3.3. NLIN Hough modes
7.3.4. Hough modes: Seasonal cycle
7.4. Nonlinear Tidal Interactions
7.4.1. Model run without SDT/SDT interaction
7.4.2. Model run without DT/TDT interaction
7.4.3. Model run without tide-tide interaction
7.5. Solar Tidal Interactions
7.6. Interactions of Different Forcing Mechanisms
7.6.1. Interaction between Nonlinear and Solar Forcing
7.6.2. Interaction between Gravity wave and Solar Forcing
7.7. Influence of Enhanced Forcing Mechanisms
7.7.1. Influence of Enhanced Solar Forcing Mechanisms
7.7.2. Influence of Enhanced Gravity Wave Forcing Mechanisms
7.7.3. Influence of Enhanced Nonlinear Forcing Mechanisms
8. Summary and Conclusion
9. Outlook
|
2 |
Analysis Of The Physical Forcing Mechanisms Influencing Salinity Transport For The Lower St. Johns RiverGiardino, Derek 01 January 2009 (has links)
The focus of this thesis is the forcing mechanisms incorporated with salinity transport for the Lower St. Johns River. There are two primary analyses performed: a historical data analysis of primary forcing mechanisms to determine the importance of each individual influence, and a tidal hydrodynamics analysis for the Lower St. Johns River to determine the required tidal constituents for an accurate resynthesis. This thesis is a preliminary effort in understanding salinity transport for the Lower St. Johns River for engineering projects such as the dredging of navigation canals and freshwater withdrawal from the river. The analysis of the physical forcing mechanisms is performed by examining the impact of precipitation, tides, and wind advection on historical salinity measurements. Three 30-day periods were selected for the analysis, to correspond with representative peak, most-variable, and low-salinity periods for 1999. The analysis displays that wind advection is the dominant forcing mechanism for the movement of salinity over a 30 day duration; however all mechanisms have an impact at some level. The dominant forcing mechanism is also dependent on the period of record examined where tidal influence is vital for durations of hours to a day, while freshwater inflow has more significance over a longer period due to climatological variation. A two-dimensional finite difference numerical model is utilized to generate a one month tidal elevations and velocities simulations that incorporates geometry, nonlinear advection and quadratic bottom friction. Several combinations of tidal constituents are extracted from this modeled tidal signal to investigate which combination of tidal constituents produces an accurate tidal resynthesis for the Lower St. Johns River. The analysis displays the need for 39 total tidal harmonic constituents to accurately resynthesize the original tidal signal. Additionally, due to the nonlinear nature of shallow water, the influence of the overtides for upstream or downstream locations in the Lower St. Johns River is shown to be spatially variable for different frequencies depending on the geometry. The combination of the constituent analysis and the historical analysis provides the basis information needed for the development of an accurate salinity transport model for the Lower St. Johns River.
|
Page generated in 0.476 seconds