• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 5
  • 4
  • 4
  • Tagged with
  • 26
  • 26
  • 8
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Wald in Raum und Öffentlichkeit

Eberl, Justus 05 March 2021 (has links)
No description available.
22

A LIFE CYCLE ANALYSIS OF FOREST MANAGEMENT DECISIONS ON HARDWOODS PLANTATIONS

Sayon Ghosh (15361603) 26 April 2023 (has links)
<p>In the Central Hardwood Region, the quantity and quality of hardwood timber critically depend on forest management decisions made by private landowners, since they hold the largest share of woodlands, some of which are plantations. These plantations are in a unique and critical position to provide much-needed hardwood resources. However, there is a lack of research and tools enabling rigorous assessments of profitability of long-term investments in hardwood plantations. Partially due to this, the majority of these privately held plantations remain unmanaged.</p> <p>This study aims at providing scientific evidence and tools to help promote forest management on hardwood plantations held by private landowners. To this end, I demonstrate in Chapter 1 an economic-modeling approach that minimizes establishment costs while ensuring free-to-grow status by year 5, and crown closure by year 10. Using temperate hardwoods such as black walnut and red oak as focal species, I find a black walnut plantation can attain crown closure in year six at the lowest cost ($4,540/ha) with 6 feet x 7 feet spacing, herbicide application for the first year, and fencing. For red oak, the minimum-cost option ($5,371/ ha) which achieves crown closure in year 10 requires a planting density of 6 feet x 7 feet, herbicide application for the first three years, and fencing. Modelling uncertainty in growth and mortality in a stochastic counterpart shifts optimal solutions to denser plantings for black walnut; planting more trees is, thus, risk mitigative. Based upon these research outcomes, I identify the tradeoffs between efficacy of treatments towards establishment success viz a viz their relative costs which serve as a solid foundation for the assessment of subsequent management strategies.</p> <p>Next, in chapter 2, I first calibrate growth, yield, and crown-width models for black walnut trees with existing and new tree measurements on selected Hardwood Tree Improvement and Regeneration Center (HTIRC) plots. Using spatial information on trees, I develop an individual tree level thinning model and simulate their post-thinning growth and yield. Significant predictors of annual diameter growth between years 10 to 18 include the initial tree DBH, forest edge effects, distance-dependent neighborhood competition, and tree age. Significant edge effects exist up to 3 rows and 3 trees from the non-forested edge. A tree on the perimeter rows grows 0.30 cm (0.12in.) in DBH more per year than the interior trees, between years 10 to 18. Next, I dovetail my results from the spatially explicit thinning model with the USFS Forest Vegetation Simulator (FVS) to understand the impacts of different scenarios of planting densities, site productivities, thinning treatments, and expected yields (as percentage of the total volume) of veneer sawlogs to quantify the growth and profitability from the mid-rotation until the final harvest. To support the attendant financial analyses, I incorporate risk into these projections by simulating stochastic windthrows based on certain assumptions. My projections suggest that, without the threat of windthrow damage, the net present day value (NPV) could exceed $4,900 per acre on the highest quality sites (SI =100) and high densities at planting (6 feet x 6 feet), assuming 10% or more of final volume was veneer and using a 3% discount rate. In contrast, under simulations of probable windthrow disturbances from mid-rotation to final harvest, the chances that standing timber value at harvest exceeds $5,000 per acre are 43.13% for a 96- and 90-year rotation and increase to 45.48% for 75 and further to 56.04% for 60.</p>
23

Temperature and Frequency Dependent Conduction Mechanisms Within Bulk Carbon Nanotube Materials

Bulmer, John Simmons 01 December 2010 (has links)
No description available.
24

Vergleich forstlicher Managementstrategien / Umsetzung verschiedener Waldbaukonzepte in einem Waldwachstumssimulator / Comparison of Forest Management Strategies / Realization of Silviculture Concepts within a Forest Growth Simulator

Duda, Henriette Abigail Aline 25 August 2006 (has links)
No description available.
25

Eco-Hydrology of a Seasonally Dry Tropical Forest : Tree Growth, Belowground Water Dynamics and Drought-Vulnerability

Tarak, Rutuja Chitra January 2016 (has links) (PDF)
Tropical forests are storehouses of more thanhalf of the world‘s biodiversity and play a key role in global carbon, water and energy cycles. However, as a consequence of rapid anthropogenic climate change, biodiversity and climate functions of these forests are under a threat. Climate is changing not only in mean state but its variability is increasing, with extreme events such as droughts, heat waves and storms also rising. Water is fundamental to plants‘ existence, and in the tropics, is a key determinant of plant species‘richness, composition, growth and survival. There is thus an increasing interest in understanding how changing rainfall may cause functional changes in forests or change their species composition. Therefore, the overarching goal of thisdissertation was to understand the impact of water variability on tropical forest tree growth and vulnerability to drought.Forest tree growth along spatial and temporal rainfall gradientsObservational studies that measure whole forest tree growth along spatial or temporal gradients of rainfall are the most common way of formulating forest growth response curves to water availability, when manipulative experiments are cost-prohibitive or impractical (fire or large mammal disturbance). In the tropics, since very few species show anatomically distinct tree rings, estimating tree growth from trunk diameter is the standard practice to obtain growth patterns across species. However, this method—of equating woody growth to diameter change--is susceptible to bias from water-induced stem flexing. In the absence of bias correction, temporal variability in growth is likely to be overestimated and incorrectly attributed to fluctuations in resource availability, especially in forests with high seasonal and inter-annual variability in water. This problem has been largely ignored in the absence of any corrective measure and due to under-appreciation of the magnitude of error. While diameter re-censuses in permanent sampling plots (PSPs) have been most commonly done at 3-5 year scale (using a graduate tape), increasingly they are done at seasonal and annual scales (using band dendrometers) to closely match variation in rainfall, the scales at which hydrostatic bias may be greater in magnitude relative to woody growth. Besides, along a spatial rainfall gradient, inter-annual variability in water may vary, causing systematic differences in the hydrostatic bias for forests along the gradient. Therefore, one broad objective of this thesis was to evaluate the problem of hydrostatic bias in whole forest growth-rainfall relationship at annual and supra-annual scales, for temporal as well as spatial rainfall gradients and propose and test a novel corrective solution.Further, it also examines if growth-diameter relationship vary along the spatial gradient, which it may arise due to differences in light environments and/or disturbance history and species composition. The missing link of Eco-hydrology Differential responses of tree species in terms of growth and survival to variation in water that they can access, the proximate cause is likely shaped through their life-history strategies, the ultimate cause. However, we neither know the depths at which the diverse tree species in a forest draw water from and its dynamics, nor variation in water at those depths vis-à-vis rainfall patterns—for lack of appropriate methods. This has been a key missing link in understanding how water shapes trees‘ life-history strategies, their demographic trade-offs and co-existence, and also our predictive ability to determine species-specific responses to changing rainfall patterns, especially droughts. Since droughts are highly stochastic events and trees‘ responses to their drought ―experiences‖ may be revealed at decadal scales, long-term evaluations are key. Therefore, the second broad objective of this thesis was to develop a framework to determine trees’ water uptake depths, variation in water availability at those depths and trees’ demographic responses over multiple decades. From this, to understand how belowground hydrology shapes drought-vulnerability, demographic trade-offs and coexistence of forest tree species. This thesis titled—Eco-Hydrology of a Seasonally Dry Tropical Forest: Tree Growth, Belowground Water Dynamics and Drought-Vulnerability—is organized as follows: Chapter 1 lays down an introduction to the thesis, followed by a description of the study site and datasets used in the thesis in Chapter 2. This thesis uses a variety of methods and multiple datasets, all of which are from the protected Seasonally Dry Tropical Forests of the Western Ghats in southern India in the Mudumalai and Bandipur National Parks. It is then followed by three data chapters: Chapter 3 describes the seasonal fluctuations in a five year long (1980-1985) tree diameter time series (using dendrometers) of a Seasonally Dry Tropical Forest in Bandipur National Park to illustrate the issue of hydrostatic stem-flexing. It investigates the possibility that band dendrometers may themselves underestimate stem shrinkage at diurnal or seasonal scale. It also evaluates if there could be a best season and time of the day for undertaking forest diameter censuses that can minimize hydrostatic bias. Chapter 4(published in Forest Ecology and Management)measures the hydrostatic bias in a sample of trees in a 50 ha PSP of a Seasonally Dry Tropical Forest in Mudumalai National Park, and proposes a novel way to correct this bias at the whole community level in the 20 year long 4-year interval growth time series. Chapter 5 (in review with Environmental Research Letters) investigates and presents two new confounding factors in growth-rainfall relationships along a spatial rainfall gradient: hydrostatic bias and size-dependency in growth rates. For this it evaluates forest tree growth estimates in seven 1-ha PSPs (~800 trees, 3-year annual time series 9using dendrometers) along a 1000 mm rainfall gradient spanning a mesic savanna-moist forest transition in Mudumalai National Park. Using the period for which seasonal diameter time series was available (2 yrs), it evaluates if the extent of seasonal fluctuations systematically vary along the gradient—most likely due to hydrostatic stem flexing. It also describes the presence of an anomalous size-diameter relationship in the mesic savanna from a large plots (50 ha PSP, diameter records using graduated tape). These observations are then used to draw insights for ―space for time‖ substitution modeling. Chapter 6 (in prep for Nature Plants) analyses belowground water environments of trees over two decades (1992-2012), a period that includes a prolonged and intense drought, in the 50 ha PSP of a Seasonally Dry Tropical Forest in Mudumalai. It uses a locally parametarised dynamic hydrological model in which site rainfall is also a forcing variable. It then develops a novel dynamic growth model and inversely estimates water uptake depths for adult trees of all common species (include ~9000 trees) in the PSP from their above-ground growth patterns over two decades vis-à-vis belowground water availability at multiple depths. It then examines if species‘ water uptake depth obtained thus is a predictor of their drought-driven mortality. Finally, this is used to evaluate the hydrological niche partitioning tree species operate under and how that drives their water uptake strategies, demographic trade-offs, and drought-vulnerability. Summarizes the thesis and suggests future directions
26

Dynamics and sustainable use of species-rich moist forests: A process-based modelling approach

Rüger, Nadja 24 January 2007 (has links)
Sustainable use of species-rich moist forests is hampered by an insufficient understanding of their dynamics and long-term response to different wood harvesting strategies. This thesis contributes to a better understanding of natural forest dynamics, explores the productivity of native forests subjected to different management strategies, and quantifies the ecological impacts of these strategies. The thesis focuses on two study regions: tropical montane cloud forest (TMCF) in central Veracruz, Mexico, and Valdivian temperate rain forest (VTRF) in northern Chiloé Island, Chile. The process-based forest growth model FORMIND is applied to study natural forest succession, to assess long-term ecological implications of fuelwood extraction on TMCF, to explore the potential of secondary TMCF for provision of ecosystem services and fuelwood, and to compare potential harvesting strategies for VTRF regarding forest productivity and ecological consequences.Simulation results show that both forest types have a high potential for wood production. As wood extraction increases, the forest structure becomes simplified because large old trees disappear from the forest. The species composition shifts to tree species that are favoured by the respective harvesting strategy. The overall ecological impact increases linearly with the amount of extracted wood. Simulation results allow to define management strategies that balance conservation and production objectives, promote the regeneration of desired tree species, or minimise shifts in the species composition of the forest. Process-based forest models enhance our understanding of the dynamics of species-rich moist forests and are indispensable tools to assess long-term implications of anthropogenic disturbances on forest ecosystems. Thereby they contribute to the conservation and sustainable use of native forests outside protected areas.

Page generated in 0.033 seconds