• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 109
  • 64
  • 16
  • 8
  • 8
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 266
  • 56
  • 31
  • 24
  • 21
  • 21
  • 17
  • 16
  • 16
  • 14
  • 14
  • 14
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Template Directed Synthesis and Characterization of Organic Mesoporous Polymers and their Adsorption Performance for Lysozyme

Sridhar, Manasa 24 September 2012 (has links)
No description available.
162

Effects of Melamine and Ether Contents on the Curing and Performance Properties of Ureaformaldehyde (Uf) Resins as Binders for Particleboard

Mao, An 11 May 2013 (has links)
The objective of this study was to investigate the effects of melamine and ether contents on the curing and performance properties of UF resins as binders for wood composites. Various UF and UMF resins were synthesized with three different synthesis procedures. These resins were examined by 13C NMR, rheometer, and other methods and evaluated as particleboard binders. Three-layer particleboards were prepared with the resins catalyzed with various catalysts and levels, applied in face and core layers. The board test results were compared. Only about half of added melamine had reacted with formaldehyde. UMF resins were found to be catalyzed with stronger catalysts at suitable levels depending on melamine levels and on which layer of particleboard the UMF resins are to be applied. Even catalyzed with a stronger catalyst, the curing rates of UMF resins were still slower, and storage stabilities were shorter than UF resins, but the pot lives were longer, and internal bond strength and water resistance were higher. Moreover, resins synthesized with procedures 2 and 3 showed obviously longer storage times, longer pot lives, and longer gel times, and the particleboards bonded with these resins showed significant improvements in internal bond strength and water absorption values but the formaldehyde contents increased. The increased formaldehyde content test values indicated that linear methylene-ether groups in UF resins decompose in the hot-pressing of boards to emit formaldehyde, most of which is not captured back into the UF resin matrix. Uron-type methylene-ether groups decompose in the hot-pressing of boards to participate in the curing process and enhance the bonding of boards, but it could also emit extra formaldehyde which may not be effectively captured by UF resins but more effectively by UMF resins if the amount of melamine is high enough because of the increased reactive capacities of melamine. The results of this research offered a new hypothesis that the linear methyleneether bonds in UF resins might be a major contributor of the high free formaldehyde contents of particleboards. Decreasing the linear methylene-ether groups contents might effectively bring down the formaldehyde content of boards.
163

Environmental impacts of formaldehyde released from and structural changes of medium density fiberboard disposed in a simulated landfill

Lee, Min 11 May 2013 (has links)
Wood waste containing formaldehyde based resins are generated yearly and disposed in landfills or burned. No regulations exist in most states and no studies have been conducted to address formaldehyde emission from wood waste buried in landfills. The objective of this study was to: a) determine the amount of formaldehyde released into air and leachate from MDF disposed in a simulated landfill, b) analyze the environmental impacts of leachate containing formaldehyde, and c) investigate change in chemical and morphological properties of disposed MDF. Sampling of MDF, soil and leachate were conducted for determination of formaldehyde weekly for 56 days by HPLC. Environmental impacts of leachate was determined by BOD, COD, and toxicity. Changes in the chemical composition and morphological structures were also determined. No detectable formaldehyde was observed in MDF, soil or leachate after 28 days. The BOD and COD levels indicated the leachate was not suitable for drinking.
164

Analysis of Calcutta bamboo for structural composite materials

Ahmad, Mansur 23 August 2000 (has links)
Land use issues have dramatically changed the timber supply outlook for our nation's forest products industry. Since demand for wood products shows no sign of abating, alternative products must be developed. Bamboo is a very promising alternative raw material for the manufacture of structural composite products. It is fast growing, economical, renewable and abundant throughout the world. Bamboo has physical and mechanical properties that are comparable to many commercial timber species, and thus, may easily be processed using existing technology from the wood-based composites industry. Bamboo can be cultivated in the U.S., and thus has the potential to relieve some of the harvesting pressure from our nation's forestlands. However, the use of specific bamboo species for structural composite products will require a thorough investigation of the material as well as its interaction with other components. Thus, the primary objective of this dissertation is to determine the properties of Calcutta bamboo and its interaction with adhesives. The properties investigated were relative density, dimensional stability, equilibrium moisture content, bending strength and stiffness, tensile strength, pH, buffer capacity, wettability and the adhesive penetration. In addition to this, a prototype bamboo parallel strip lumber (BPSL) was manufactured and tested for its physical and mechanical properties. The relationships among the properties of Calcutta bamboo and the prototype bamboo composite were also investigated. As the result of these investigations, it is concluded that Calcutta bamboo is technically a suitable raw material for structural composite products. This result may also be applicable for the utilization of other bamboo species, thus aiding companies in decisions regarding investment in bamboo plantations and manufacturing facilities in the U.S, Malaysia and other parts of the world. The primary benefits from this research may be the development of new products to serve growing markets, and thereby relieving some of the pressure to harvest forestlands. / Ph. D.
165

Developing Reference Materials for VOC, Formaldehyde and SVOC Emissions Testing

Liu, Zhe 18 May 2012 (has links)
Volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) constitute important classes of indoor contaminants. Emissions of VOCs and SVOCs from myriad building materials and consumer products cause high indoor concentrations with health risks that may be orders-of-magnitude greater than outdoors. The need to control VOC and SVOC emissions from interior materials and thereby reduce indoor concentrations is made more urgent by the prevailing drive for air-tight, energy efficient buildings. To develop low-emission products, emission rates are usually measured in emission chambers. However, there are three significant problems associated with chamber tests: (1) VOC emissions testing procedures of individual laboratories are frequently subject to error and uncertainty; (2) SVOC emissions testing in chambers is extremely difficult and time-consuming, and also subject to error and uncertainty; and (3) chamber tests provide little insight into the mechanisms controlling emissions. This research aimed to solve these problems by developing reference materials for VOC and SVOC emissions testing. Formaldehyde was studied separately from other VOCs because of its unusual properties. Emission mechanisms, and the related modeling approaches for predicting emissions, were investigated by reviewing the literature and performing chamber studies. Based on the internally controlled VOC and formaldehyde emission mechanisms, diffusion-controlled reference materials, which mimic real sources, were created for VOCs and formaldehyde. Approaches for developing externally controlled reference materials for SVOC emissions testing were also explored. Appropriate mechanistic models can predict the true emission rates of the reference materials and therefore provide reference values to validate emissions testing results and certify procedures of individual laboratories. The potential of a solid phase microextraction (SPME) method was also evaluated and found to be a promising technique that can be used in chamber tests to simplify and improve sampling and analytical procedures. This research elucidates the mass-transfer mechanisms of VOC and SVOC emissions and provides practical approaches for developing reference materials for emissions testing. The fundamental understanding and methodological advances will enhance indoor air quality science, improve the emissions testing industry, and provide a sound basis on which to develop standards and regulations. / Ph. D.
166

Novel Liquid extraction method for detecting Native-wood Formaldehyde

Tasooji, Mohammad 06 June 2014 (has links)
New vigorous regulations have been established for decreasing the allowable formaldehyde emissions from nonstructural wood based composites. Two main sources of formaldehyde emission in non-structural wood based composites are adhesive and wood. Adhesives are quite well known and great efforts have been conducted to decrease their formaldehyde content; however formaldehyde emission from wood has received little attention and it is not completely understood. Wood-borne formaldehyde emission exists in a complex equilibrium in wood matrix. The reaction between formaldehyde and wood hydroxyl groups/water can hinder the complete formaldehyde extraction. In order to have a complete formaldehyde extraction, a stronger nucleophile than hydroxyl and water groups is needed. In this study cross-linked poly (allylamine) (PAA) beads were synthesized and used as a strong nucleophile to extract all the biogenic and synthetic free-formaldehyde within the woody matrix of never-heated and heat-treated Virginia pines; the results were compared to simple water extraction. A new formaldehyde capturing device was also developed using a serum bottle. Results showed that there was no advantage of using PAA beads over simple water extraction for extracting woody matrix free-formaldehyde. This means that simple water extraction can extract all the free-formaldehyde from the woody matrix. It was also found that thermal treatment resulted in generating more wood-borne formaldehyde. The other important finding was the new developed formaldehyde capturing device. The device was very promising for detecting wood-borne formaldehyde from very small pieces of wood (5-70 mg) and can be very useful in future studies. / Master of Science
167

Effect of Cellulose Nanocrystals on the Rheology, Curing Behavior, and Fracture Performance of Phenol-Formaldehyde Resol Resin

Hong, Jung Ki 10 January 2010 (has links)
The purpose of this research was to determine the effects of cellulose nanocrystals (CNCs), as potential additives, on the properties and performance of phenol–formaldehyde (PF) adhesive resin. The steady-state viscosity of a commercial PF resol resin and three CNC–resin mixtures, containing 1–3 wt % CNCs, based on solids content, was measured with a rheometer as a function of shear rate. The viscosity of the PF resin itself was independent of shear rate. The viscosity–shear rate curves of the CNC–resin mixtures showed two regions, a shear thinning region at lower shear rates and a Newtonian region at higher shear rates. The low-shear-rate viscosity of the resin was greatly increased by the CNCs. The structure of the CNC–resin mixtures under quiescent conditions was analyzed by polarized light microscopy. The mixtures contained CNC aggregates, which could be disrupted by ultrasound treatment. The curing progressions of the resin and CNC–resin mixtures were analyzed by non-isothermal differential scanning calorimetry (DSC). The DSC curves showed two exotherms followed by an endotherm. The energy of activation for the first exotherm was reduced by the CNCs whereas the energy of activation for the second exotherm was not affected by the CNCs. Increasing CNC contents caused higher degrees of reaction conversion during the first curing stage and a greater loss of sample mass, attributed to formaldehyde release during resin cure. For analysis of the mechanical properties during and after cure, sandwich-type test specimens were prepared from southern yellow pine strips and the resin and CNC–resin mixtures. The mechanical properties of the test specimens were measured as a function of time and temperature by dynamic mechanical analysis (DMA). The time to incipient storage modulus increase decreased and the rate of relative storage modulus increase increased with increasing CNC content. The ultimate sample stiffness increased with increasing CNC content for CNC contents between 0 and 2 wt %, which was attributed to mechanical reinforcement of the resin by the CNCs. At a CNC content of 3 wt %, the ultimate sample stiffness was lower than at a CNC content of 2 wt % and the second tan δ maximum occurred earlier in the experiment, indicating an earlier onset of vitrification. The lower ultimate sample stiffness was attributed to premature quenching of the curing reactions through CNC-induced depression of the vitrification point. For analysis of the fracture performance, double cantilever beam test specimens were prepared from southern yellow pine beams and the resin and CNC–resin mixtures, using different hot-pressing times. Fracture energies were measured by mode I cleavage tests. Bondline characteristics were analyzed by light microscopy. At a hot-pressing time of 10 min, the fracture energy decreased with increasing CNC content, whereas it stayed constant for CNC contents between 1 and 3 wt % at a hot-pressing time of 8 min. The bondlines of resin mixtures containing CNCs exhibited voids, whereas those of the pure resin did not. CNCs had both benefitial and detrimental effects on the properties and performace of PF resin. / Master of Science
168

Characterization of PF Resol/Isocyanate Hybrid Adhesives

Riedlinger, Darren Andrew 25 March 2008 (has links)
Water-based resol phenol formaldehyde, PF, and organic polymeric methylenebis(phenylisocyanate), pMDI, are the two primary choices for the manufacture of exterior grade wood-based composites. This work addresses simple physical blends of pMDI dispersed in PF as a possible hybrid wood adhesive. Part one of this study examined the morphology of hybrid blends prepared using commercially available PF and pMDI. It was found that the blend components rapidly reacted such that the dispersed pMDI droplets became encased in a polymeric membrane. The phase separation created during liquid/liquid blending appeared to have been preserved in the cured, solid-state. However, substantial interdiffusion and copolymerization between blend components also appeared to have occurred according to measured cure rates, dynamic mechanical analysis, and atomic force microscopy. In the second part of this study a series of PF resins was synthesized employing the so-called "split-cook" method, and by using a range of formaldehyde/phenol and NaOH/phenol mole ratios. These neat PF resins were subjected to the following analyses: 1) steady-state flow viscometry, 2) free formaldehyde titration, 3) non-volatile solids determination, 4) size exclusion chromatography, 5) quantitative solution-state ¹³C nuclear magnetic resonance, NMR, 6) differential scanning calorimetry, 7) parallel-plate oscillatory cure rheology, and 8) dielectric spectroscopy. The neat PF analytical results were unremarkable with one exception; NMR revealed that the formaldehyde/phenol mole ratio in one resin substantially differed from the target mole ratio. The neat PF resins were subsequently used to prepare of series of PF/pMDI blends in a ratio of 75 parts PF solids to 25 parts pMDI solids. The resulting PF/pMDI blends were subjected to the following analyses: 1) differential scanning calorimetry, 2) parallel-plate oscillatory cure rheology, and 3) dielectric spectroscopy. Similar to what was inferred in part one of this study, both differential scanning calorimetry (DSC) and oscillation cure rheology demonstrated that cure of the PF continuous phase was substantially altered and accelerated by pMDI. However within actual wood bondlines, dielectric analysis detected little variation in cure speed between any of the formulations, both hybrid and neat PF. Furthermore, the modulated DSC curing experiments detected some latent reactivity in the hybrid system, both during initial isothermal curing and subsequent thermal scanning. The latent reactivity may suggest that a significant diffusion barrier existed between blend components, preventing complete reaction of hybrid blends even after thermal scanning up to 200 °C. Part three of this work examined the bonded wood mode-I fracture performance of hybrid resins as a function of the resol formaldehyde/phenol ratio and also the alkali content. A moderate increase in unweathered fracture toughness was observed for hybrid formulations relative to neat PF. Following accelerated weathering, the durability of the hybrid blends was promising: weathered hybrid toughness was equivalent to that of weathered neat PF. While the resol F/P ratio and alkali content both influenced hybrid fracture toughness, statistical modeling revealed interaction between these variables that complicated result interpretation: the influence of hybrid alkali content depended heavily on each formulation's specific F/P ratio, and vice versa. / Master of Science
169

Enhancement of Phenol Formaldehyde Adhesive with Crystalline Nano Cellulose

Ekstrand, Johan January 2019 (has links)
Abstract The wood industries to this day use almost exclusively petroleum derived adhesives that are based mainly on the reaction of formaldehyde with urea, melamine or phenol. These adhesives have low cost and good adjustable properties which makes it hard for bio-based alternatives to compete. Phenol formaldehyde (PF), as an example of a synthetic adhesive, has been in use for over 100 years. In some parts of the world, legislation around formaldehyde is changing, and there is an increasingly voluntary awareness about the toxicity and unsustainability of formaldehyde. Industries realize that raw materials from oil is unstainable. The latter is currently a driving factor behind research on alternatives to amino based adhesives. Also, consumer interest in healthy and sustainable products, such as emitting less formaldehyde indoors, increases the need for bio based adhesives. Cellulose contained in plant cell walls is a renewable, abundant and nontoxic resource. During the last decades, many innovations have been achieved around cellulose and this trend does not seem to be slowing down. Cellulose shows excellent mechanical properties, high strength, high elastic modulus as well as having a low density. Research about cellulose reinforced adhesives has been increased the last years. This thesis studied the enhancement of phenol formaldehyde adhesive with Crystalline Nano Cellulose (CNC) at 5wt% and 10wt% loading levels for producing plywood boards. Indecisive results when using CNC higher than 3wt%, especially with PF resin, have been reported by other authors. In this thesis, European standards were applied. EN 314 was applied to test the panels shear strength. Three (3) treatment classes were selected, indoor room condition as well as pre-treatments 5.1.1 and 5.1.3. Other properties measured were modulus of elasticity, thickness swelling, formaldehyde emissions. Results showed a shear strength increase for all pre-treatment classes. 10wt% CNC mixture with phenol formaldehyde in water bath, pre-treatment (5.1.1) for 24h showed the highest increase in shear strength (+73,9%). The 10 wt% CNC mixture panels also showed the highest wood fibre failure of all panel types produced. A decrease in MOE has been observed with 10 wt% CNC compared to the 5 wt% CNC panels. Formaldehyde emissions tests were inconclusive, but since less PF was used, there was a general reduction in emissions. The 5 wt% CNC panels were superior in terms of modulus of elasticity and swelling and also showed improved shear strength.
170

Wheeze during the first 18 months of life: a prospective cohort study to explore the associations with indoor nitrogen dioxide, formaldehyde and family history of asthma. / 對室内二氧化氮、甲醛、哮喘家族史和18個月或以下幼童初發性哮喘的關係序列研究 / CUHK electronic theses & dissertations collection / Dui shi nei er yang hua dan, jia quan, xiao chuan jia zu shi he 18 ge yue huo yi xia you tong chu fa xing xiao chuan de guan xi xu lie yan jiu

January 2011 (has links)
Fung, Kit Ching. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 134-144). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese. / Some appendixes in Chinese.

Page generated in 0.0568 seconds