Spelling suggestions: "subject:"formas espaciais esférica"" "subject:"formas espaciais atmosféricas""
1 |
Teorema de Borsuk-Ulam para formas espaciais esféricas / Borsuk-Ulam theorem for spherical space formsSantos, Marjory Del Vecchio dos 18 July 2014 (has links)
O objetivo principal deste trabalho é apresentar um estudo sobre o Teorema de Borsuk-Ulam para forma espacial esférica homotópica. Em nosso trabalho consideramos X uma n-forma espacial esférica homotópica a qual admite uma ação livre de Zp, com p> 2 primo e f : X → Rk uma função contínua e, mostramos que sob determinada relação entre os números n e k, o conjunto A(f) dos pontos de coincidência de f é não vazio / The main objective of this work is to present a study about the Borsuk- Ulam Theorem for homotopic spherical space. In our work we consider X be a n-dimensional homotopic spherical space form which admits a free action of Zp, with p> 2 prime and f : X → Rk be a continuous map and we show that, under certain relations between the numbers n and k, the set A(f) is not empty
|
2 |
Teorema de Borsuk-Ulam para formas espaciais esféricas / Borsuk-Ulam theorem for spherical space formsMarjory Del Vecchio dos Santos 18 July 2014 (has links)
O objetivo principal deste trabalho é apresentar um estudo sobre o Teorema de Borsuk-Ulam para forma espacial esférica homotópica. Em nosso trabalho consideramos X uma n-forma espacial esférica homotópica a qual admite uma ação livre de Zp, com p> 2 primo e f : X → Rk uma função contínua e, mostramos que sob determinada relação entre os números n e k, o conjunto A(f) dos pontos de coincidência de f é não vazio / The main objective of this work is to present a study about the Borsuk- Ulam Theorem for homotopic spherical space. In our work we consider X be a n-dimensional homotopic spherical space form which admits a free action of Zp, with p> 2 prime and f : X → Rk be a continuous map and we show that, under certain relations between the numbers n and k, the set A(f) is not empty
|
3 |
Grupos split metacíclicos e formas espaciais esféricas metacíclicas / Split metacyclic groups and split metacyclic spherical space formsFemina, Ligia Laís 02 December 2011 (has links)
Neste trabalho, estudamos a ação dos grupos split metacíclicos \'D IND. (2h+1) POT. 2 nas esferas. Encontramos uma região fundamental dos espaços quocientes, chamados de Formas Espaciais Esféricas Metacíclicas, que foi utilizada para construirmos um conveniente complexo de cadeias destas formas com o qual calculamos o anel de cohomologia e a torção de Reidemeister. Obtivemos também uma relação entre as diferentes torções encontradas / In this work, we study the action of the split metacyclic groups \'D IND. (2h+1) POT. 2 on the spheres. We find a fundamental domain of the quotient spaces, called Metacyclic Spherical Space Forms. Through this region we have built a convenient chain complex of these spaces and we used it to calculate their cohomology ring and Reidemeister torsion. We obtained also a relation between the different torsions found
|
4 |
Grupos split metacíclicos e formas espaciais esféricas metacíclicas / Split metacyclic groups and split metacyclic spherical space formsLigia Laís Femina 02 December 2011 (has links)
Neste trabalho, estudamos a ação dos grupos split metacíclicos \'D IND. (2h+1) POT. 2 nas esferas. Encontramos uma região fundamental dos espaços quocientes, chamados de Formas Espaciais Esféricas Metacíclicas, que foi utilizada para construirmos um conveniente complexo de cadeias destas formas com o qual calculamos o anel de cohomologia e a torção de Reidemeister. Obtivemos também uma relação entre as diferentes torções encontradas / In this work, we study the action of the split metacyclic groups \'D IND. (2h+1) POT. 2 on the spheres. We find a fundamental domain of the quotient spaces, called Metacyclic Spherical Space Forms. Through this region we have built a convenient chain complex of these spaces and we used it to calculate their cohomology ring and Reidemeister torsion. We obtained also a relation between the different torsions found
|
5 |
Decomposição celular e torção de Reidemeister para formas espaciais esféricas tetraedrais / Cellular decomposition and Reidemeister torsion for tetrahedral spherical space formsGalves, Ana Paula Tremura 14 February 2013 (has links)
Dada uma ação isométrica livre do grupo binário tetraedral G sobre esferas de dimensão ímpar, obtemos uma decomposição celular finita explícita para as formas espaciais esféricas tetraedrais, fazendo uso do conceito de região (ou domínio) fundamental. A estrutura celular deixa explícita uma descrição do complexo de cadeias sobre o grupo G. Como aplicações, utilizamos o complexo de cadeias e a interpretação geométrica do produto cup para calcular o anel de cohomologia da forma espacial esférica tetraedral em dimensão três, e também calculamos a torção de Reidemeister destes espaços para uma determinada representação de G / Given a free isometric action of a binary tetrahedral group G on odd dimensional spheres, we obtain an explicit finite cellular decomposition of the tetrahedral spherical space forms, using the concept of fundamental domain. The cellular structure gives an explicit description of the associated cellular chain complex over the group G. As applications we use the chain complex and the geometric interpretation of the cup product to calculate the cohomology ring of the tetrahedral spherical space form in three dimension, and also compute the Reidemeister torsion of these spaces for a determined representation of G
|
6 |
Decomposição celular e torção de Reidemeister para formas espaciais esféricas tetraedrais / Cellular decomposition and Reidemeister torsion for tetrahedral spherical space formsAna Paula Tremura Galves 14 February 2013 (has links)
Dada uma ação isométrica livre do grupo binário tetraedral G sobre esferas de dimensão ímpar, obtemos uma decomposição celular finita explícita para as formas espaciais esféricas tetraedrais, fazendo uso do conceito de região (ou domínio) fundamental. A estrutura celular deixa explícita uma descrição do complexo de cadeias sobre o grupo G. Como aplicações, utilizamos o complexo de cadeias e a interpretação geométrica do produto cup para calcular o anel de cohomologia da forma espacial esférica tetraedral em dimensão três, e também calculamos a torção de Reidemeister destes espaços para uma determinada representação de G / Given a free isometric action of a binary tetrahedral group G on odd dimensional spheres, we obtain an explicit finite cellular decomposition of the tetrahedral spherical space forms, using the concept of fundamental domain. The cellular structure gives an explicit description of the associated cellular chain complex over the group G. As applications we use the chain complex and the geometric interpretation of the cup product to calculate the cohomology ring of the tetrahedral spherical space form in three dimension, and also compute the Reidemeister torsion of these spaces for a determined representation of G
|
Page generated in 0.0907 seconds