Spelling suggestions: "subject:"informationation control"" "subject:"informationation coontrol""
61 |
Commande Nonlinéaire et Navigation des Véhicules Marins Sous-actionnésGhommam, Jawhar 23 February 2008 (has links) (PDF)
Dans cette thèse nous adressons le problème de commande des véhicules marins sous-actionnés. La motivation clé de ce sujet de recherche vient du fait qui les systèmes sous-actionnés posent des défis aussi bien théoriques et pratiques pour l'ingénieur automaticien. En fait, ces systèmes ne peuvent pas être stabilisés par des commandes lisses invariantes dans le temps. De plus, en dépit du nombre de méthodes disponibles pour la commande des systèmes mécaniques sous-actionnés, peu ont adressé des points pratiques importantes tels que l'inclusion explicite de dynamique dans la formulation de problème de commande et le besoin de faire face aux perturbations environnementales résultants des courants des vagues, par exemple. Cette thèse attaque certains de ces problèmes, formule et résout les problèmes de commande de positionnement dynamique, de la poursuite de trajectoire et du suivie de chemin des véhicules marins sous-actionnés. La première partie de cette thèse (Chapitres 3 et 4) constituent les éléments théoriques fondamentaux pour l'analyse du modèle et la synthèse des commandes pour les véhicules marins sous-actionnés. Particulièrement, nous montrons au chapitre 3 que le modèle de véhicule marin sous-actionné ne satisfait pas la condition de nécessaire Brockett pour la stabilisation des systèmes nonlinéaires par actions continues et invariantes dans le temps. Cependant, Il sera montré qu'il est possible d'atteindre la stabilisation en utilisant une commande discontinue ou variable dans le temps. Le chapitre 4 consiste à appliquer des résultats récents sur les systèmes cascades nonlinéaires pour résoudre le problème de déterminer des lois de commande qui stabilisent à l'origine la position et l'orientation d vaisseau sous-actionnés. Deux transformations sont introduites pour représenter le système dans une forme de cascade. Par quelques propriétés du modèle, nous montrons en premier que la stabilisation globale et asymptotique du système se réduit a stabiliser une forme en chaîne de troisième ordre. Une approche discontinue par backstepping est ensuite employée pour la stabilisation du système de forme en chaîne via un retour d'état partiel. Nous montrons que la loi de commande proposée stabilise exponentiellement le modèle réduit dans un ensemble défini, assurant le stabilisation asymptotique, local et uniforme du modèle de vaisseau marin sous-actionné. Pour assurer la stabilité uniforme globale cependant, un backstepping et le temps combinés variant l'approche de contrôle est donc employée. Prochain, nous exploitons la structure de cascade pour construire une trajectoire convenable produite par les équations dynamiques d'un véritable sous-actionnés bateau. Nous montrons ensuite que la stabilisation globale peut être assurée par une par une combinaison de la commande par backstepping et une commande variable dans le temps. Ensuite nous abordons le problème de poursuite de trajectoire. Dans lequel la trajectoire de référence est générée par un navire sous-actionné virtuel. Nous montrons ensuite qu'il existe une commande qui force exponentiellement le navire à la poursuite de la trajectoire partant d'une condition initiale quelconque. Utilisant une approche des Systems cascades, nous montrons que la dynamique de l'erreur de poursuite peut être vue comme une cascade d'un système linéaire et d'un système en chaine de deuxième ordre. La deuxième partie de cette thèse (Chapitre 5, 6 et 7) est consacrée au problème de la manoeuvre du vaisseau sous-actionné le long d'un chemin désiré avec une dynamique prescrite. La conception de la loi de commande est abordée par deux approches. La première vient d'une observation qu'il est plausible en pratique de manoeuvrer le véhicule tel qu'il soit sur son chemin de référence est que sa vitesse totale soit tangente au chemin. Il sera aussi supposé que le véhicule voyage le long du chemin avec une vitesse directe constante. La seconde approche ne conditionne pas la vitesse directe pour être constante. Dans le Chapitre 5, nous exploitons l'approche abordée pour le suivi de chemin pour résoudre le problème de coordinations d'un groupe de véhicules marins. Il est objet de manoeuvrer le mouvement de chaque véhicule tel que le mouvement du groupe est prescrit par un comportement désiré. Ainsi, le mouvement indépendant est coordonné comme une formation selon le comportement désirée. Dans ce chapitre nous considérerons le problème de formation ou plusieurs véhicules sont synchronisés de manière qu'ils soient commandés comme une formation de structure virtuelle. Le chapitre 6, est dévouée au problème général de la commande par retour de sortie pour la stabilisation globale des véhicules marins sous-actionnés. Une application de tel observateur est ensuite faite au problème de la poursuite de trajectoire d'un vaisseau sous-actionné.
|
62 |
Reactive navigation of a fleet of drones in interaction / Navigation réactive de drones en interaction dans une flottilleSaif, Osamah 23 March 2016 (has links)
De nos jours, les applications utilisant des quadrirotors autonomes sont en plein essor. La surveillance et la sécurité de sites industriels ou sensibles, de zones géographiques pour l’agriculture par exemple sont quelques-unes des applications les plus célèbres des véhicules aériens sans pilote (UAV). Actuellement, certains chercheurs et scientifiques se concentrent sur le déploiement multi-drones pour l’inspection et la surveillance de vastes zones. L’objectif de cette thèse est de concevoir des algorithmes afin de réaliser une commande de vol en formation distribuée/décentralisée de multi-UAVs en temps réel dans une perspective de systèmes de systèmes. Tout d’abord, nous avons passé en revue certains travaux récents de la littérature sur la commande de vol en formation et la commande de quadrirotors. Nous avons présenté une brève introduction sur les systèmes de systèmes, leur définition et leurs caractéristiques. Ensuite, nous avons introduit la commande de vol en formation avec ses structures les plus utilisées dans la littérature. Nous avons alors présenté quelques travaux existants traitant du flocking (comportement de regroupement en flotte), les méthodes de modélisation les plus utilisés pour les quadrirotors et quelques approches de commande les plus utilisées pour stabiliser des quadrirotors. Deuxièmement, nous avons utilisé la structure de la commande comportementale pour réaliser un vol en formation de plusieurs UAVs. Nous avons conçu un comportement pour réaliser le vol en formation de multi-UAVs sans fragmentation. Le comportement proposé traite le problème flocking dans une perspective globale, c’est-à-dire, nous avons inclus une tendance dans chaque drone pour former une formation. Les défis des Systèmes de systèmes nous a motivés à chercher des algorithmes de flocking et de consensus introduits dans la littérature qui peuvent être utiles pour répondre à ces défis. Cela nous a amenés à proposer quatre lois de commande en visant à être compatibles avec le modèle non linéaire des quadrirotors et pouvant être expérimentés sur des plates-formes réelles. Les lois de commande ont été exécutées à bord de chaque quadrirotor dans la formation et chaque quadrirotor interagit avec ses voisins pour assurer un vol en formation sans collision. Enfin, nous avons validé nos lois de commande par des simulations et des expériences en temps réel. Pour la simulation, nous avons utilisé un simulateur de multi quadrirotors développé au laboratoire Heudiasyc. Pour les expériences, nous avons mis en œuvre nos lois de contrôle sur des quadrirotors ArDrone2 évolués dans un environnement intérieur équipé d’un système de capture de mouvement (Optitrack). / Nowadays, applications of autonomous quadrotors are increasing rapidly. Surveillance and security of industrial sites, geographical zones for agriculture for example are some popular applications of Unmanned Aerial Vehicles (UAVs). Nowadays, researchers and scientists focus on the deployment of multi-UAVs for the inspection and the surveillance of large areas. The objective of this thesis is to design algorithms and techniques to perform a real-time distributed/decentralized multi-UAVs flight formation control, from a system of systems perspective. Firstly, we reviewed recent works of the literature about flight formation control and the control of quadrotors. We presented a brief introduction about systems of systems, their definition and characteristics. Then, we introduced the flight formation control with its most used structures in the literature, some existing works dealing with flocking. Finally, we presented the most used modeling methodologies for quadrotors and some control approaches that are used to stabilize quadrotors. Secondly, we used the behavioral-based control structure to achieve a multiple UAV flocking. We conceived a behavior intending to address the control design towards a successful achievement of the flocking task without fragmentation. The proposed behavior treats the flocking problem from a global perspective, that is, we included a tendency of separated UAVs to form a flock.System of systems challenges motivated us to look for flocking and consensus algorithms introduced in the literature that could be helpful to answer to these challenges. This led us to propose four flocking control laws aiming at being compatible with the nonlinear model of quadrotors and at being implemented on experimental platforms. The control laws were run aboard each quadrotor in the flock. By running the control law, each quadrotor interacts with its neighbors to ensure a collision-free flocking. Finally, we validated our proposed control laws by simulations and real-time experiments. For the simulation, we used a PC-based simulator of flock of multiple quadrotors which was developed at Heudiasyc laboratory. For experiments, we implemented our control laws on ArDrone2 quadrotors evolved in an indoor environment equipped with an Optitrack motion capture system.
|
63 |
Contribution à la Commande d’un Groupe de Robots Mobiles Non-holonomes à Roues / Formation Control of Multiple Nonholonomic Wheeled Mobile RobotsPeng, Xhaoxia 09 July 2013 (has links)
Ce travail s’inscrit dans le cadre de la commande d’un système multi agents/ multi véhicules. Cette thèse traite en particulier le cas de la commande d’un système multi-robots mobiles non-holonomes. L'objectif est de concevoir des lois de commandes appropriées pour chaque robot de sorte que l’ensemble des robots puisse exécuter des tâches spécifiques, de suivre des trajectoires désirées tout en maintenant des configurations géométriques souhaitées. L’approche leadeur-suiveur pour la commande d’un groupe de robots mobiles non-holonomes est étudiée en intégrant la technologie backstepping, avec une approche basée sur les neurodynamiques bioinspirées. Le problème de commande distribuée d’un système multi robots sur le consensus est également étudié. Des lois de commandes cinématiques distribuées sont développés afin de garantir au système multi-robots la convergence exponentielle vers une configuration géométrique souhaitée. Afin de tenir compte de la dynamique des paramètres inconnus, des commandes adaptatives de couple sont développés pour que le système multi-robots puisse converger asymptotiquement vers le modèle géométrique souhaité. Lorsque la dynamique est inconnue, des commandes à base de réseaux de neurones sont proposées / This work is based on the multi-agent system / multi-vehicles. This thesis especially focuses on formation control of multiple nonholonomic mobile robots. The objective is to design suitable controllers for each robot according to different control tasks and different constraint conditions, such that a group of mobile robots can form and maintain a desired geomantic pattern and follow a desired trajectory. The leader-follower formation control for multiple nonholonomic mobile robots is investigated under the backstepping technology, and we incorporate a bioinspired neurodynamics scheme in the robot controllers, which can solve the impractical velocity jumps problem. The distributed formation control problem using consensus-based approach is also investigated. Distributed kinematic controllers are developed, which guarantee that the multi-robots can at least exponentially converge to the desired geometric pattern under the assumption of "perfect velocity tracking". However, in practice, "perfect velocity tracking" doesn’t hold and the dynamics of robots should not be ignored. Next, in consideration of the dynamics of robot with unknown parameters, adaptive torque controllers are developed such that the multi-robots can asymptotically converge to the desired geometric pattern under the proposed distributed kinematic controllers. Furthermore, When the partial knowledge of dynamics is available, an asymptotically stable torque controller has been proposed by using robust adaptive control techniques. When the dynamics of robot is unknown, the neural network controllers with the robust adaptive term are proposed to guarantee robust velocity tracking
|
64 |
Commande locale décentralisée de robots mobiles en formation en milieu naturel / Local decentralized control of a formation of mobile robots in off-road contextGuillet, Audrey 30 October 2015 (has links)
La problématique étudiée dans cette thèse concerne le guidage en formation d’une flotte de robots mobiles en environnement naturel. L’objectif poursuivi par les robots est de suivre une trajectoire connue (totalement ou partiellement) en se coordonnant avec les autres robots pour maintenir une formation décrite comme un ensemble de distances désirées entre les véhicules. Le contexte d’évolution en environnement naturel doit être pris en compte par les effets qu’il induit sur le déplacement des robots. En effet, les conditions d’adhérence sont variables et créent des glissements significatifs des roues sur le sol. Ces glissements n’étant pas directement mesurables, un observateur est mis en place, permettant d’obtenir une estimation de leur valeur. Les glissements sont alors intégrés au modèle d’évolution, décrivant ainsi un modèle cinématique étendu. En s’appuyant sur ce modèle, des lois de commande adaptatives sur l’angle de braquage et la vitesse d’avance d’un robot sont alors conçues indépendamment, asservissant respectivement son écart latéral à la trajectoire et l’interdistance curviligne de ce robot à une cible. Dans un second temps, ces lois de commande sont enrichies par un algorithme prédictif, permettant de prendre en compte le comportement de réponse des actionneurs et ainsi d’éviter les erreurs conséquentes aux retards de la réponse du système aux commandes. À partir de la loi de commande élémentaire en vitesse permettant d’assurer un asservissement précis d’un robot par rapport à une cible, une stratégie de commande globale au niveau de la flotte est établie. Celle-ci décline l’objectif de maintien de la formation en consigne d’asservissement désiré pour chaque robot. La stratégie de commande bidirectionnelle conçue stipule que chaque robot définit deux cibles que sont le robot immédiatement précédent et le robot immédiatement suivant dans la formation. La commande de vitesse de chaque robot de la formation est obtenue par une combinaison linéaire des vitesses calculées par la commande élémentaire par rapport à chacune des cibles. L’utilisation de coefficients de combinaison constants au sein de la flotte permet de prouver la stabilité de la commande en formation, puis la définition de coefficients variables est envisagée pour adapter en temps réel le comportement de la flotte. La formation peut en effet être amenée à évoluer, notamment en fonction des impératifs de sécurisation des véhicules. Pour répondre à ce besoin, chaque robot estime en temps réel une distance d’arrêt minimale en cas d’urgence et des trajectoires d’urgence pour l’évitement du robot précédent. D’après la configuration de la formation et les comportements d’urgence calculés, les distances désirées au sein de la flotte peuvent alors être modifiées en ligne afin de décrire une configuration sûre de la formation. / This thesis focuses on the issue of the control of a formation of wheeled mobile robots travelling in off-road conditions. The goal of the application is to follow a reference trajectory (entirely or partially) known beforehand. Each robot of the fleet has to track this trajectory while coordinating its motion with the other robots in order to maintain a formation described as a set of desired distances between vehicles. The off-road context has to be considered thoroughly as it creates perturbations in the motion of the robots. The contact of the tire on an irregular and slippery ground induces significant slipping and skidding. These phenomena are hardly measurable with direct sensors, therefore an observer is set up in order to get an estimation of their value. The skidding effect is included in the evolution of each robot as a side-slip angle, thus creating an extended kinematic model of evolution. From this model, adaptive control laws on steering angle and velocity for each robot are designed independently. These permit to control respectively the lateral distance to the trajectory and the curvilinear interdistance of the robot to a target. Predictive control techniques lead then to extend these control laws in order to account for the actuators behavior so that positioning errors due to the delay of the robot response to the commands are cancelled. The elementary control law on the velocity control ensures an accurate longitudinal positioning of a robot with respect to a target. It serves as a base for a global fleet control strategy which declines the overall formation maintaining goal in local positioning objective for each robot. A bidirectionnal control strategy is designed, in which each robot defines 2 targets, the immediate preceding and following robot in the fleet. The velocity control of a robot is finally defined as a linear combination of the two velocity commands obtained by the elementary control law for each target. The linear combination parameters are investigated, first defining constant parameters for which the stability of the formation is proved through Lyapunov techniques, then considering the effect of variable coefficients in order to adapt in real time the overall behavior of the formation. The formation configuration can indeed be prone to evolve, for application purposes and to guarantee the security of the robots. To fulfill this latter requirement, each robot of the fleet estimates in real time a minimal stopping distance in case of emergency and two avoidance trajectories to get around the preceding vehicle if this one suddenly stops. Given the initial configuration of the formation and the emergency behaviors calculated, the desired distances between the robots can be adapted so that the new configuration thus described ensures the security of each and every robot of the formation against potential collisions.
|
65 |
Control Barrier Functions for Formation Control of Leader-follower Multi-agent Systems / Kontrollbarriärfunktioner för Formationskontroll av Leader-follower Multi-agent SystemSun, Tianrun January 2023 (has links)
This thesis studies formation control for a class of general leader-follower multi-agent systems with Control Barrier Functions (CBFs) such that connectivity maintenance is fulfilled for all the neighboring agents. In leader-follower multi-agent systems, only the leader agents are controlled by the externally designed input, while the followers are guided through their dynamic couplings with the neighboring agents. The main problem is how to keep all adjacent agents maintain within the communication distance during the formation process. In this thesis, Control Barrier Functions (CBFs) are utilized in order to maintain connectivity among the neighboring agents. This thesis firstly introduces a general first-order leader-follower multi-agent systems with proper connectivity constrains. All edges in the system are divided into three categories: follower-follower edges, leader-follower edges and leader-leader edges. Three different kinds of edges are discussed individually. For each category, the relevant topological conditions and control barrier functions are defined and proved for both tree graphs and general graphs. Several simulation examples are implemented to verify the developed results. Both theory and simulation results show that the developed results are a strong support for the formation control of leader-follower system in order to achieve connectivity maintenance. / Denna avhandling studerar formationskontroll för en klass av generella ledare-följare multi-agent-system med kontrollbarriärfunktioner (CBFs) så att anslutningsunderhållet uppfylls för alla angränsande agenter. I ledar-följare multi-agent-system är det bara ledaragenterna som styrs av den externt utformade ingången, medan följaren guidas genom sina dynamiska kopplingar med grannagenterna. Huvudproblemet är hur man kan hålla alla intilliggande agenter inom kommunikationsavståndet under bildningsprocessen. I det här examensarbetet används kontrollbarriärfunktioner (CBF) för att upprätthålla förbindelser mellan angränsande agenter. Detta examensarbete introducerar först ett allmänt första ordningens ledare-följare multi-agentsystem med korrekta anslutningsbegränsningar. Alla kanter i systemet är indelade i tre kategorier: efterföljarkanter, ledare-följarkanter och ledare-ledarkanter. Tre olika sorters kanter diskuteras individuellt. För varje kategori definieras och bevisas de relevanta topologiska förhållandena och kontrollbarriärfunktionerna för både trädgrafer och allmänna grafer. Flera simuleringsexempel implementeras för att verifiera de framtagna resultaten. Både teori- och simuleringsresultat visar att de utvecklade resultaten är ett starkt stöd för bildandet av ledare-följare-system för att uppnå anslutningsunderhåll
|
66 |
CoordinateFree Spacecraft Formation Control with Global Shape Convergence under VisionBased SensingMirzaeedodangeh, Omid January 2023 (has links)
Formation control in multi-agent systems represents a groundbreaking intersection of various research fields with lots of emerging applications in various technologies. The realm of space exploration also can benefit significantly from formation control, facilitating a wide range of functions from astronomical observations, and climate monitoring to enhancing telecommunications, and on-orbit servicing and assembly. In this thesis, we present a novel 3D formation control scheme for directed graphs in a leader-follower configuration, achieving (almost) global convergence to the desired shape. Specifically, we introduce three controlled variables representing bispherical coordinates that uniquely describe the formation in 3D. Acyclic triangulated directed graphs (a class of minimally acyclic persistent graphs) are used to model the inter-agent sensing topology, while the agents’ dynamics are governed by the single-integrator model and 2nd order nonlinear version representing spacecraft formation flight. The analysis demonstrates that the proposed decentralized robust formation controller using prescribed performance control ensures (almost) global asymptotic stability while avoiding potential shape ambiguities in the final formation. Furthermore, the control laws are implementable in arbitrarily oriented local coordinate frames of follower agents using only low-cost onboard vision sensors, making them suitable for practical applications. Formation maneuvering and collision avoidance among agents are also addressed which play crucial roles in the safety of space operations. Finally, we validate our formation control approach by simulation studies. / Formationskontroll i system med flera agenter representerar en banbrytande skärningspunkt av olika forskningsområden med massor av nya tillämpningar inom olika teknologier. Rymdutforskningens rike kan också dra stor nytta av formationskontroll, underlättar ett brett utbud av funktioner från astronomiska observationer och klimat övervakning för att förbättra telekommunikation och service och montering i omloppsbana. I denna avhandling presenterar vi ett nytt 3D-formationskontrollschema för riktade grafer i en ledare-följare-konfiguration, vilket uppnår (nästan) global konvergens till önskad form. Specifikt introducerar vi tre kontrollerade variabler som representerar bisfäriska koordinater som unikt beskriver formationen i 3D. Acykliska triangulerade riktade grafer (en klass av minimalt acykliska beständiga grafer) används för att modellera avkänningstopologin mellan agenter, medan agenternas dynamik styrs av singelintegratormodellen och 2:a ordningen olinjär version som representerar rymdfarkostbildningsflygning. Analysen visar att den föreslagna decentraliserade robusta formationskontrollanten använder föreskriven prestanda kontroll säkerställer (nästan) global asymptotisk stabilitet samtidigt som potentiell form undviks oklarheter i den slutliga formationen. Dessutom är kontrolllagarna implementerbara i godtyckligt orienterade lokala koordinatramar för efterföljare som endast använder lågkostnad ombord visionsensorer, vilket gör dem lämpliga för praktiska tillämpningar. Formationsmanövrering och undvikande av kollisioner mellan agenter tas också upp som spelar avgörande roller i säkerheten vid rymdoperationer. Slutligen validerar vi vår strategi för formningskontroll genom simuleringsstudier
|
67 |
Safety-aware autonomous robot navigation, mapping and control by optimization techniquesLei, Tingjun 08 December 2023 (has links) (PDF)
The realm of autonomous robotics has seen impressive advancements in recent years, with robots taking on essential roles in various sectors, including disaster response, environmental monitoring, agriculture, and healthcare. As these highly intelligent machines continue to integrate into our daily lives, the pressing imperative is to elevate and refine their performance, enabling them to adeptly manage complex tasks with remarkable efficiency, adaptability, and keen decision-making abilities, all while prioritizing safety-aware navigation, mapping, and control systems. Ensuring the safety-awareness of these robotic systems is of paramount importance in their development and deployment. In this research, bio-inspired neural networks, nature-inspired intelligence, deep learning, heuristic algorithm and optimization techniques are developed for safety-aware autonomous robots navigation, mapping and control. A bio-inspired neural network (BNN) local navigator coupled with dynamic moving windows (DMW) is developed in this research to enhance obstacle avoidance and refines safe trajectories. A hybrid model is proposed to optimize trajectory of the global path of a mobile robot that maintains a safe distance from obstacles using a graph-based search algorithm associated with an improved seagull optimization algorithm (iSOA). A Bat-Pigeon algorithm (BPA) is proposed to undertake adjustable speed navigation of autonomous vehicles in light of object detection for safety-aware vehicle path planning, which can automatically adjust the speed in different road conditions. In order to perform effective collision avoidance in multi-robot task allocation, a spatial dislocation scheme is developed by introduction of an additional dimension for UAVs at different altitudes, whereas UAVs avoid collision at the same altitude using a proposed velocity profile paradigm. A multi-layer robot navigation system is developed to explore row-based environment. A directed coverage path planning (DCPP) fused with an informative planning protocol (IPP) method is proposed to efficiently and safely search the entire workspace. A human-autonomy teaming strategy is proposed to facilitate cooperation between autonomous robots and human expertise for safe navigation to desired areas. Simulation, comparison studies and on-going experimental results of optimization algorithms applied for autonomous robot systems demonstrate their effectiveness, efficiency and robustness of the proposed methodologies.
|
68 |
Distributed Adaptive Fault-Tolerant Control of Nonlinear Uncertain Multi-Agent SystemsKhalili, Mohsen 29 August 2017 (has links)
No description available.
|
69 |
Funnel-Based Control for Coupled Spatiotemporal Specifications / Trattbaserade reglermetoder för kopplade spatiotemporala specifikationerMehdifar, Farhad January 2024 (has links)
In the past decade, the integration of spatiotemporal constraints into control systems has emerged as a crucial necessity, driven by the demand for enhanced performance, guaranteed safety, and the execution of complex tasks. Spatiotemporal constraints involve criteria that are dependent on both space and time, which can be represented by time-varying constraints in nonlinear control systems. Funnel-based control methods provide computationally tractable and robust feedback control laws to enforce time-varying constraints in uncertain nonlinear systems. This thesis begins by exploring the application of funnel-based control designs to address performance specifications in coordinate-free formation control of multi-agent systems. Moreover, we develop new robust feedback control schemes dealing with coupled spatiotemporal constraints in uncertain nonlinear systems that cannot be directly addressed by conventional funnel-based control methods. In the first part of the thesis, we present a novel coordinate-free formation control scheme for directed leader-follower multi-agent systems, exhibiting almost global convergence to the desired shape. The synthesis of fully decentralized robust controllers for agents is achieved through the application of the Prescribed Performance Control (PPC) method. This method imposes spatiotemporal funnel constraints on each agent's formation errors, ensuring a predefined transient and steady-state performance while maintaining robustness to system uncertainties. The core idea in this work is the utilization of bipolar coordinates to achieve orthogonal (decoupled) formation errors for each follower agent. This approach not only ensures the global convergence to the desired shape but also facilitates the effective application of the PPC method. In the second part of the thesis, first, we introduce a novel approach that extends funnel-based control schemes to deal with a specific class of time-varying hard and soft constraints. In this work, we employ an online Constraint Consistent Funnel (CCF) planning scheme to tackle couplings between hard and soft constraints. By satisfying these CCF constraints, we ensure adherence to hard (safety) constraints, while soft (performance) constraints are met only when they do not conflict with the hard constraints. Subsequently, we directly employ the PPC design method to craft a robust, low-complexity control law, ensuring that the system's outputs consistently stay within the online planned CCF constraints. In subsequent work, we tackle the challenge of satisfying a generalized class of potentially coupled time-varying output constraints. We show that addressing multiple constraints effectively boils down to formulating a single consolidating constraint. Ensuring the fulfillment of this consolidating constraint guarantees both convergence to and invariance of the time-varying output-constrained set within a user-defined finite time. Building on the PPC design method, we introduce a novel, robust low-complexity feedback control framework to handle this issue in uncertain high-order MIMO nonlinear control systems. Additionally, we present a mechanism for online modification of the consolidating constraint to secure a least-violating solution when constraint infeasibilities occur for an unknown time interval. / Under det senaste decenniet har integrationen av bivillkor i tid och rum för reglersystem framstått som en nödvändighet, driven av efterfrågan på förbättrad prestanda, garanterad säkerhet och utförandet av komplexa uppgifter. Bivillkor i tid och rum för icke-linjära reglersystem kan representeras av tidsvarierande bivillkor. Trattbaserade reglermetoder ("funnel-based control") tillhandahåller beräkningsmässigt hanterbara och robusta återkopplingslagar för att garantera tidsvarier-ande bivillkor i osäkra icke-linjära system. Denna avhandling börjar med att utforska tillämpningen av trattbaserade kontrollmetoder för att hantera prestanda-specifikationer i koordinatfri formationskontroll av multiagentsystem. Dessutom utvecklar vi nya robusta återkopplingslagar som hanterar kopplade bivillkor i tid och rum för osäkra icke-linjära system som inte direkt kan hanteras av konventionella trattbaserade kontrollmetoder. I den första delen av avhandlingen presenterar vi en ny koordinatfri formationskontrollmetod för riktade ledare-följare multiagentsystem, vilken uppvisar nästan global konvergens till den önskade formen. Syntesen av helt decentraliserade robusta regulatorer för agenter uppnås genom tillämpning av Prescribed Performance Control (PPC)-metoden. Denna metod lägger på trattbivillkor i tid och rum på varje agents formationsfel och säkerställer en fördefinierad transient och stationär prestanda samtidigt som robusthet mot systemosäkerheter bibehålls. Kärnan i detta arbete är användningen av bipolära koordinater för att uppnå ortogonala (frikopplade) formationsfel för varje följande agent. Detta tillvägagångssätt säkerställer inte bara global konvergens till den önskade formen utan underlättar också en effektiva tillämpning av PPC-metoden. I den andra delen av avhandlingen introducerar vi först ett nytt tillvägagångssätt som utökar trattbaserade kontrollmetoder för att hantera en specifik klass av tidsvar-ierande hårda och mjuka bivillkor. I detta arbete använder vi en online Constraint Consistent Funnel (CCF)-planeringsmetod för att tackla sammankopplingar mellan hårda och mjuka bivillkor. Genom att uppfylla dessa CCF-bivillkor säkerställer vi efterlevnad av hårda (säkerhets-) bivillkor, medan mjuka (prestanda-) bivillkor uppfylls endast när de inte strider mot de hårda bivillkoren. Därefter tillämpar vi direkt PPC-designmetoden för att utforma en robust reglerlag med låg komplexitet som säkerställer att systemets utsignal konsekvent håller sig inom de online planerade CCF-bivillkoren. Därefter hanterar vi utmaningen med att uppfylla en generaliserad klass av potentiellt kopplade tidsvarierande utsignals-bivillkor. Vi visar att effektiv hantering av flera bivillkor i grund och botten handlar om att formulera ett sammanfattande bivillkor. Uppfyllandet av detta sammanfattande bivillkor garanterar både konvergens till och invarians av den tidsvarierande mängden som uppfyller utsignalsbivillkoren, inom en användardefinierad begränsad tid. Baserat på PPC-designmetoden introducerar vi en ny, robust återkopplingsregulatorstruktur för att hantera detta problem i osäkra högordnings MIMO icke-linjära reglersystem. Dessutom presenterar vi en mekanism för online-modifiering av det sammanfattande bivillkoret för att säkra en lösning med minsta möjliga kränkning då bivillkoren blir omöjliga att uppfylla under en okänd tidsperiod. / <p>QC 20231229</p>
|
70 |
Invariance and Sliding Modes. Application to coordination of multi-agent systems, bioprocesses estimation, and control in living cellsVignoni, Alejandro 26 May 2014 (has links)
The present thesis employs ideas of set invariance and sliding modes
in order to deal with different relevant problems control of nonlinear
systems. Initially, it reviews the techniques of set invariance as well as
the more relevant results about sliding modes control. Then the main
methodologies used are presented: sliding mode reference conditioning,
second order sliding modes and continuous approximation of sliding
modes. Finally, the methodologies are applied to different problems in
control theory and to a variety of biologically inspired applications.
The contributions of the thesis are:
The development of a method to coordinate dynamical systems
with different dynamic properties by means of a sliding mode auxiliary
loop shaping the references given to the systems as function
of the local and global goals, the achievable performance of each
system and the available information of each system.
Design methods for second order sliding mode algorithms. The
methods decouple the problem of stability analysis from that of
finite-time convergence of the super-twisting sliding mode algorithm.
A nonlinear change of coordinates and a time-scaling are
used to provide simple, yet flexible design methods and stability
proofs. Application of the method to the design of finite-time convergence
estimators of bioprocess kinetic rates and specific biomass
growth rate, from biomass measurements. Also the estimators are
validated with experimental data.
The proposal of a strategy to reduce the variability of a cell-to-cell
communication signal in synthetic genetic circuits. The method
uses set invariance and sliding mode ideas applied to gene expression
networks to obtain a reduction in the variance of the communication signal. Experimental approaches available to modify the
characteristics of the gene regulation function are described. / Vignoni, A. (2014). Invariance and Sliding Modes. Application to coordination of multi-agent systems, bioprocesses estimation, and control in living cells [Tesis doctoral]. Editorial Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/37743
|
Page generated in 0.2258 seconds