Spelling suggestions: "subject:"forme normale dde birkhoff"" "subject:"forme normale dde birkhoffs""
1 |
Invariants iso-spectraux et théorèmes KAM / Isospectral invariants and KAM theoremsWallez, Thomas 26 October 2018 (has links)
L’objectif de ce travail est d’établir des résultats de rigidité spectrale pour des familles C1 d’opérateurs (pseudo-)différentiels elliptiques auto-adjoints Pt, t ϵ [0, ẟ] sur une variété lisse compacte M sans bord de dimension n ≥ 2. Dans les deux premiers chapitres, on étudie des hamiltoniens proches d’un hamiltonien intégrable qui est non dégénéré au sens de Kolmogorov (Système KAM). On y construit une forme normale de Birkhoff au voisinage de chaque tore KAM ayant une fréquence diophantienne. Dans les chapitres 3 et 4 on établit une forme normale de Birkfoff quantique afin de construire des familles C1 de quasi-modes. Ces dernières permettent de relier les propriétés spectrales de Pt aux propriétés dynamiques des tores KAM. Les deux derniers chapitres proposent des applications en lien avec la transformée de Radon ainsi qu’une étude sur les surfaces de rotation. / The aim of this work is to obtain spectral rigidity results for C1 families of elliptic self-adjoint (pseudo-)differential operators Pt, t ϵ [0, ẟ], on a smooth closed manifold M of dimension n ≥ 2. In the first two chapters, we investigate Hamiltonians close to a given integrable Hamiltonian which is non-degenerate in the sense of Kolmogorov (KAM system). This allows us to obtain a Birkhoff normal form in a neighborhood of any KAM tori with a Diophantine frequency. In the third and fourth chapters, we construct a quantum Birkhoff normal form and obtain C1 families of quasimodes. Using the quasi-modes, we establish a connection between the spectral properties of Pt and the dynamical properties of the KAM tori. The last two chapters provide applications of these results to the Radon transform and the surfaces of revolution.
|
2 |
Monodromie d'opérateurs non auto-adjointsQuang Sang, Phan 28 June 2012 (has links) (PDF)
Nous proposons de construire dans cette thèse un invariant combinatoire, appelée la "monodromie spectrale" à partir du spectre d'un seul opérateur h-pseudo-différentiel (non auto-adjoint) à deux degrés de liberté dans la limite semi-classique. Notre inspiration est issue de la monodromie quantique qui est définie pour le spectre conjoint d'un système intégrable de n opérateurs h-pseudo-différentiels auto-adjoints qui commutent, donnée par S. Vu Ngoc. Le premier cas simple traité dans ce travail est celui d'un opérateur normal. Dans ce cas, son spectre discret peut être identifié au spectre conjoint d'un système quantique intégrable. Le deuxième cas plus complexe que nous proposons est une petite perturbation d'un opérateur auto-adjoint en supposant une propriété d'intégrabilité classique. Nous montrons que son spectre discret (dans une petite bande autour de l'axe réel) possède également une monodromie combinatoire. La difficulté ici est qu'on ne connaît pas la description du spectre partout, mais seulement dans un ensemble de type Cantor. De plus, nous montrons aussi que cette monodromie peut être identifiée à la monodromie classique (qui est définie par J. Duistermaat). Ce sont les résultats principaux de cette thèse.
|
Page generated in 0.0765 seconds