• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanisms Of Nanofilter Fouling And Treatment Alternatives For Surface Water Supplies

Reiss, Charles Robert 01 January 2005 (has links)
This dissertation addresses the role of individual fouling mechanisms on productivity decline and solute mass transport in nanofiltration (NF) of surface waters. Fouling mechanisms as well as solute mass transport mechanisms and capabilities must be understood if NF of surface waters is to be successful. Nanofiltration of surface waters was evaluated at pilot-scale in conjunction with advanced pretreatment processes selected for minimization of nanofilter fouling, which constituted several integrated membrane systems (IMSs). Membrane fouling mechanisms of concern were precipitation, adsorption, particle plugging, and attached biological growth. Fouling was addressed by addition of acid and antiscalent for control of precipitation, addition of monochloramine for control of biological growth, microfiltration (MF) or coagulation-sedimentation-filtration (CSF) for control of particle plugging, and in-line coagulation-microfiltration (C/MF) or CSF for control of organic adsorption. Surface water solutes of concern included organic solutes, pathogens, and taste and odor compounds. Solute mass transport was addressed by evaluation of total organic carbon (TOC), Bacillus subtilis endospores, gesomin (G), 2-methlyisoborneol (MIB), and threshold odor number (TON). This evaluation included modeling to determine the role of diffusion in solute mass transport including assessment of the homogeneous solution diffusion equation. A cellulose acetate (CA) NF was less susceptible to fouling than two polyamide (PA) NFs. NF fouling was minimized by the addition of monochloramine, lower flux, lower recovery, and with the use of a coagulant-based pretreatment (C/MF or CSF). NF surface characterization showed that the low fouling CA film was less rough and less negatively charged than the PA films. Thus the theory that a more negatively charged surface would incur less adsorptive fouling, due to charge repulsion, was not observed for these tests. The rougher surface of the PA films may have increased the number of sites for adsorption and offset the charge repulsion benefits of the negatively charged surface. The addition of monochloramine significantly reduced biodegradation and integrity loss of the CA membrane. PA membranes are inherently not biologically degradable due to their chemical structure. Monochloramination reduced the rate of fouling of the PA membrane but resulted in a gradual increase in water mass transfer coefficient and a decrease in TDS rejection over time, which indicated damage and loss of integrity of the PA membrane. Based on surface characterization by X-ray Photoelectron Spectroscopy (XPS) and Fourier Transform Infrared Spectrometry (FTIR), the PA membrane degradation appeared to be chemically-based and initiated with chlorination of amide nitrogen and/or aromatic rings, which ultimately resulted in disruption of membrane chemical structures. The recommended Integrated Membrane System to control fouling of a surface water nanofiltration system is CSF monochloramine/acid/antiscalent„³monochloramine-tolerant NF. This IMS, at low flux and recovery, operated with no discernable fouling and is comparable to a groundwater nanofiltration plant with cleaning frequencies of once per six months or longer. A significant portion of the organic solutes including total organic carbon (TOC) passing through the membranes was diffusion controlled. Permeate concentration increased with increasing recovery and with decreasing flux for both PA and CA membranes. The influence was diminished for the PA membrane, due to its high rejection capabilities. Total rejection of spores used as pathogen surrogates was not achieved as spores were indigenous and high spore concentrations were used in all challenge studies; however, Integrated Membrane System spore rejection exceeded credited regulatory rejection of similar sized microorganisms by conventional treatment by several logs. Spore rejection varied by NF but only slightly by MF as size-exclusion controlled. There was no difference among spore rejection of IMS with and without in-line coagulation. Consequently, these results indicate membrane configuration (Hollow fiber>Spiral Wound) and membrane film (Composite Thin Film>CA) significantly affected spore rejection. Geosmin and methylisoborneol have molecular weights of 182 and 168 respectively, and are byproducts of algal blooms, which commonly increase taste and odor as measured by the threshold odor number (TON) in drinking water. Although these molecules are neutral and were thought to pass through NFs, challenge testing of IMS unit operations found that significant removal of TON, G and MIB was achieved by membrane processes, which was far superior to conventional processes. A CA NF consistently removed 35 to 50 percent of TON, MIB, and G, but did not achieve compliance with the TON standard of 3 units. A PA NF provided over 99 percent removal of MIB and G. Challenge tests using MIB and G indicated that size-exclusion controlled mass transfer of these compounds in NF membranes.
2

Etude du décolmatage, par procédés chimiques et biologiques, des membranes échangeuses d'ions utilisées en électrodialyse dans le domaine agroalimentaire / Cleaning study of ion-exchange membranes used in electrodialysis for food industry by chemical and biological processes

Bdiri, Myriam 30 October 2018 (has links)
L’électrodialyse (ED) est principalement basée sur l’action spécifique des membranes échangeuses d’ions (MEIs) et est largement répandue en industrie agroalimentaire pour la stabilisation tartrique des vins, la désacidification et le traitement des jus de fruits, la déminéralisation du lactosérum ou l’élimination et le fractionnement des protéines du lait. Le colmatage organique, accentué par la complexité de composition des effluents alimentaires et leur richesse en composés phénoliques, représente un facteur majeur de limitation de l’efficacité des procédés et des performances des MEIs. Ce phénomène provoque une diminution de la sélectivité de membranes, une augmentation de leur résistance électrique et réduit le rendement énergétique du procédé conduisant à des pertes économiques en industrie. Cette étude consiste principalement à étudier le décolmatage de MEIs par procédés chimiques et biologiques. Des lots de membranes échangeuses de cations (MECs) et d’anions (MEAs) neuves (1 lot de MEC et 1 lot de MEA) et usées (3 lots de MECs et 2 lots de MEAs) à différentes durées d’utilisation en ED dans l’industrie agroalimentaire –application confidentielle- ont été étudiés. L’ensemble des échantillons ont préalablement été caractérisés pour détermination des paramètres physicochimiques (capacité d’échange (CE), épaisseur (Tm), conductivité électrique (km), angle de contact (θ), teneur en eau (WC) ainsi que la fraction volumique de la solution inter-gel (f2) résultant de l’exploitation du modèle microhétérogène), de structure et morphologiques par spectroscopie IR-TF, microscopie optique, microscopie électronique à balayage et mécaniques par essais de traction. Les effets directs et indirects (causés par les opérations de lavage régulières en industrie) du colmatage ainsi que l’anisotropie des propriétés mécaniques de membrane ont été mis en évidence. Des méthodes de nettoyage non agressives et respectueuses de l’environnement ont été expérimentées en mode statique en ex-situ : Solutions salines (NaCl à 35 g.L-1 et eau de mer reconstituée), solution hydro-alcoolique (mélange eau-éthanol 12%, pH=3,5) et solutions biologique utilisant 3 catégories d’agents enzymatiques (Rohalase BX-BXL, β-glucanase / Corolase 7089, endo-peptidase / Tyrosinase, polyphenol-oxydase) dont les conditions opératoires d’activité enzymatiques optimale ont été déterminées. L’évolution de CE, km, θ et f2 ont été suivis en fonction de la durée de nettoyage. Les solutions salines ont un effet négligeable sur le nettoyage en profondeur mais restent efficaces pour le nettoyage de surface. Cependant, l’application de la solution hydro-alcoolique et des solutions d’enzymes se sont avérées être efficaces pour le décolmatage interne et externe et parviennent à rétablir significativement les paramètres suivis. Il a été démontré que les composés phénoliques, principaux constituants des effluents traités, sont en majeure partie responsables du colmatage des MEIs. Ceux-ci forment des nanoparticules colloïdales denses, non perméables aux ions dans les méso- et macropores des MEIs et ne pénètrent pas dans ses micropores. Une modification du modèle microhétérogène selon cette hypothèse a permis de fournir une interprétation adéquate du km et de modéliser la modification structurale de la phase inter-gel engendrée par les mécanismes de colmatages de polyphénols et expliquer les raisons de diminution du facteur f2app. Une méthode d’extraction utilisant un mélange de solvants (25%V/V, acétone/méthanol/isopropanol/eau) a été mise au point et a permis d’extraire certains composés phénoliques de différents lots de MECs et MEAs usées et ont été identifiés par chromatographie liquide à haute performance. Il a été démontré que les interactions entre les composés phénoliques et la matrice polymère étaient principalement régies par l’empilement des cycles aromatiques et des interactions électrostatiques du type CH-pi et pi-pi ainsi que les liaisons hydrogènes / Conventional electrodialysis (ED) is mainly based on the specific action of ion exchange membranes (IEMs) and is widely used in food industry for tartaric stabilization of wines, deacidification and treatment of fruit juices, demineralization of whey or elimination and fractionation of milk proteins. The organic fouling, accentuated by the complex composition of the food effluents and their richness in phenolic compounds, represents a major limitative factor of the process efficiency and the IEMs performance. This phenomenon causes a decrease in the selectivity of membranes, an increase in their electrical resistance and reduces the energy efficiency of the process leading to economic losses in industry. This study mainly consists in studying the IEMs cleaning by chemical and biological methods. Two batches of new membranes (cation- (CEMs) and anion-exchange membranes (AEMs)) and five batches of used ones (3 CEMs and 2 AEM) with different durations of use in ED units in food industry -confidential application- have been studied. All the samples have been previously characterized to determine their physicochemical parameters (ion-exchange capacity (IEC), thickness (Tm), electrical conductivity (km), contact angle (θ), water content (WC) and the volume fraction of the inter-gel solution (f2) resulting from the study of the micro heterogeneous model), structure and morphology by FTIR spectroscopy, optical microscopy, scanning electron microscopy and mechanical by tensile strength tests. The direct and indirect effects (caused by the regular cleaning operations in industry) of fouling as well as the anisotropy of the membranes mechanical properties have been highlighted. Non-aggressive and environmentally friendly cleaning methods have been experimentally tested in ex-situ static mode: Saline solutions (35 g.L-1 NaCl and reconstituted seawater), hydro-alcoholic solution (12% water-ethanol mixture, pH = 3,5) and biological solutions using 3 categories of enzymatic agents (Rohalase BX-BXL, β-glucanase / Corolase 7089, endo-peptidase / Tyrosinase, polyphenol oxidase) whose operating conditions of optimal enzymatic activity have been determined. The evolution of IEC, km, θ and f2 were followed in function of the cleaning duration. Saline solutions have a negligible effect on intern cleaning but remain efficient for extern cleaning. However, the application of the hydro-alcoholic solution and enzyme solutions have been found to be efficient for both intern and extern cleaning and led to significant recoveries of the studied parameters. It has been shown that phenolic compounds, the principal constituents of treated effluents, are mainly responsible for MEIs fouling. Apparently, they form dense colloidal nanoparticles not permeable for ions within membrane meso- and macropores, not penetrating into micropores. A modification of the micro heterogeneous model under this assumption allowed an adequate interpretation of km and the modelization of structural modifications of the inter-gel phase generated by the fouling mechanisms by polyphenols and explained the reasons why the f2app decreases. An extraction method using a mixture of solvents (25% V/V, acetone/methanol/ isopropanol/water) was developed and made it possible to extract certain phenolic compounds from different batches of used CEMs and AEMs that were identified by high performance liquid chromatography. It has also been demonstrated that the interactions between the phenolic compounds and the polymer matrix are mainly governed by the stacking of aromatic rings and electrostatic interactions of the CH-pi and pi-pi type as well as the hydrogen bonds
3

Réutilisation des eaux usées épurées par association de procédés biologiques et membranaires / Urban wastewater reuse by combination of biological and membrane processes

Jacob, Matthieu 19 April 2011 (has links)
Les procédés de réutilisation des eaux usées doivent être robustes, fiables et rentables pour que leur utilisation se démocratise et devienne complémentaire des traitements des eaux de surface. Le couplage d’un procédé biologique et de procédés membranaires représente une solution prometteuse pour répondre à ces challenges. Cette étude se focalise sur l’impact des conditions de fonctionnement du procédé secondaire (en particulier par bioréacteur à membrane BAM) sur le colmatage du procédé tertiaire de nanofiltration (NF) ou d’osmose inverse (OI) ainsi que sur le devenir des micropolluants et microorganismes tout au long de la chaine de traitement. Dans un premier temps, des expériences à court terme de filtration avec différentes membrane NF et d’OI ont été réalisées afin de caractériser les interactions entre effluents secondaires et membranes. Il a ainsi été observé de très fortes rétentions de tous les micropolluants ciblés par la Directive Cadre Européenne. En termes de colmatage, la chute de flux de l’OI, essentiellement liée pour ces essais de courte durée à une augmentation de pression osmotique puis à un dépôt de cristaux minéraux, peut être maîtrisée en contrôlant le pH et la concentration en carbonate et phosphate de l’effluent secondaire. Par ailleurs, des chutes de flux plus importantes sont observées lors des filtrations réalisées avec les membranes de NF qui sont plus sensibles au colmatage irréversible. Dans un second temps, l’optimisation de la filière de traitement des eaux usées urbaines couplant un bioréacteur à membranes à un procédé d’OI a été réalisée à partir d’une unité pilote fonctionnant en continu. La sélection de conditions opératoires adéquates a permis de faire fonctionner le procédé d’OI pendant plus de quatre mois sans qu’aucune maintenance ne soit réalisée. Une faible chute de flux de l’OI, linéaire sur toute la période de filtration, essentiellement dû à l’adsorption de molécules organiques à la surface de la membrane, a été observée. Sur l’ensemble de la période d’essais, la filière BAM/OI permet d’obtenir un abattement optimal en micropolluants présents. Lorsque des micropolluants sont injectés à des concentrations plus élevées (simulation d’une brusque dégradation de la qualité des eaux en entrée de filière) dans le bioréacteur, une chute de l’activité de la biomasse couplée à un relargage de produits microbiens solubles peut être observée. Néanmoins, ces pics de pollution n’ont eu aucun impact sur le colmatage de la membrane du BAM ni sur celle de l’OI. La filière BAM-OI permet donc de garantir un taux de rejet élevé et une productivité d’environ 15 L.h-1.m2 quelles que soient les fluctuations de la composition de l’eau usée urbaine à traiter. / In order to be competitive compare to surface water treatments, wastewater reuse needs robust, reliable and profitable combination of technologies. The combination of bioreactors and membrane processes seems to be a promising solution to these challenges. This study focus on the impact of the operating conditions of the secondary treatment (particularly the membrane bioreactor (MBR)) on the nanofiltration (NF) and reverse osmosis (RO) tertiary treatments as well as the fate of micropollutants and microorganisms along the treatment line. Firstly, short term filtration experiments with various NF and RO membranes were performed in order to characterize the interactions between secondary treatment effluents (STE) and membranes. High retentions of micropollutants listed by the European water framework directive were observed. During these short term experiments, RO flux decline is mainly due to an increase of osmotic pressure and then a precipitation of salts that can be solved by controlling the pH and thus the carbonate and phosphate concentration of the STE. In addition, higher flux declines are observed with NF because of a higher irreversible fouling behavior. Secondly, continuous long term tests were performed on a pilot unit combining a MBR and a RO processes. The appropriate selection of operating conditions allowed treating wastewater during more than four months without any maintenance. A linear low flux decline, mainly due to adsorption of organic molecules at the membrane surface was observed. During this filtration period, the MBR/RO process presented very high micropollutant retentions. When micropollutants are injected at higher concentration (simulation of sudden fluctuation of feed composition) into the MBR, a drop of biomass activity combined with soluble microbial products release can be observed. Nevertheless, these peaks of pollution did not cause any additional fouling of MBR as well as RO membranes. MBR/RO process is then a reliable technology that can guaranty high retention and productivity (around 15 L.h-1.m-2) whatever the fluctuations of the feed composition.

Page generated in 0.0737 seconds