• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 66
  • 27
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 132
  • 132
  • 27
  • 14
  • 13
  • 13
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Resolubilidade global para campos vetoriais no toro n-dimensional / Global solvability for vector fields on the n-torus

Gonzalez, Rafael Borro 02 March 2015 (has links)
Abordaremos o estudo de condições para que certas equações diferenciais parciais tenham solução. Consideraremos equações do tipo Lu = f; onde tomamos L em algumas classes de campos vetoriais em toros de dimensão maior que dois. Tais campos vetoriais são operadores que agem no espaço das funções definidas no toro e que são infinitamente diferenciáveis. A principal questão é determinar quando tais operadores têm imagem fechada. Temos também interesse em saber quando que a imagem de tais operadores e um subespaço de codimensão finita, bem como estudar a regularidade de tais operadores. As respostas de tais questões envolvem certas propriedades dos coeficientes desses operadores, onde citamos: a conexidade de sub-níveis de primitivas da parte imaginária dos coeficientes; condições Diofantinas; a ordem de anulamento dos coeficientes e relações entre as ordens de anulamento das partes real e imaginária dos coeficientes; além disso, o número de vezes que a parte imaginária de um coeficiente c muda de sinal entre dois zeros consecutivos de c também desempenha um papel. Conseguimos caracterizar a resolubilidade e a hipoelíticidade global de campos vetoriais do tipo tubo em toros de dimensão maior do que dois, estendendo os resultados em dimensão dois. Depois, em dimensões, fornecemos condições que respondem sobre a imagem ser ou não fechada, para uma outra classe de campos vetoriais que não são do tipo tubo. Uma de tais condições esta relacionada com a famosa condição (P) de Nirenberg-Treves. Em particular, obtemos o mesmo para uma classe de campos vetoriais em dimensão são dois, para os quais a codimensão da imagem foi exaustivamente estudada. / We are concerned with the study of properties so that we can solve certain partial differential equations. We will consider equations of the form Lu = f; where we take L in some classes of vector fields on tori of dimension greater than two. This vector fields are viewed as operators acting on the space of smooth functions deffned on the torus. The main questions to study the closedness of the range of L. It is also of interest to know whe ther the range has finite codimension, as well as to study the regularity of L. The answers of these questions are connected with certain properties of the coeffcients of L; such as: Diophantine conditions; the connectedness of some sublevel sets involving primitive so fthe imaginary part of the coeffcients; the order of vanishing of each coeffcient and relations between the order of vanishing of the real and imaginary parts of each coeffcient; in addition, the number of times that the imaginary part of a coeffcient c changes sign between two consecutive zeros of c also plays a role. We characterize both global solvability and hypoellipticity for vector fields of tube type on tori of dimension greater than two, extending the results in dimension two. More over, in dimension three, we find conditions for the closedness of the range for a class of vector fields which are not of tube type. One of theese conditions is related to the well known Nirenberg-Treves condition (P). In particular,we obtain the same for a class of vector fields on the two- torus,for which the codimension of the range was largely studied.
62

Matrizes operacionais e formalismo coadjunto em equações diferenciais fracionais. / Operational matrices and coadjoint formalism in fractional differential equations.

Castro, William Alexandre Labecca de 29 September 2015 (has links)
O método das matrizes operacionais é expandido para o corpo complexo a ordens arbitrárias pela abordagem de Riemann-Liouville e Caputo com ênfase nas séries de Fourier complexas. Elabora-se uma adaptação do formalismo bra-ket de Dirac à linguagem tensorial no espaço de Hilbert de funções com expansões finitas para uso específico na teoria de equações diferenciais e matrizes operacionais, denominado \\Formalismo Coadjunto\". Estende-se o tratamento aos operadores fracionais de Weyl para períodos genéricos a fim de determinar as matrizes operacionais de derivação e integração de ordem arbitrária na base complexa de Fourier. Introduz-se um novo método de resolução de equações diferenciais ordinárias lineares e fracionais não-homogêneas, denominado \\Modelagem Operacional\", que permite a obtenção de soluções de equações de alta ordem com grande precisão sem a necessidade de imposição de condições iniciais ou de contorno. O método apresentado é aperfeiçoado por meio de um novo tipo de expansão, que denominamos \"Séries Associadas de Fourier\", a qual apresenta convergência mais rápida que a série de Fourier original numa restrição de domínio, possibilitando soluções de EDOs e EDFs de alta ordem com maior precis~ao e ampliando a esfera de casos passíveis de resolução. / Operational matrices method is expanded to complex field and arbitrary orders by using the Riemann-Liouville and Caputo approach with emphasis on complex Fourier series. Dirac\'s bra-ket notation is associated to tensor procedures in Hilbert spaces for finite function expansions to be applied specifically to dfferential equations and operational matrices, being called \\Coadjoint Formalism\". This treatment is extended to Weyl fractional operators for generic periods in order to establish the integral and derivative operational matrices of fractional order to complex Fourier basis. A new method to solve linear non-homogeneous ODEs and FDEs, called \\Operational Modelling\"is introduced. It yields high precision solutions on high order dfferential equations without assumption of boundary or initial conditions. The presented method is improved by a new kind of function expansion, called \\Fourier Associated Series\", which yields a faster convergence than original Fourier in a restrict domain, enabling to obtain solutions of high order ODEs and FDEs with excellent precision and broadening the set of solvable equations.
63

Resolubilidade global para campos vetoriais no toro n-dimensional / Global solvability for vector fields on the n-torus

Rafael Borro Gonzalez 02 March 2015 (has links)
Abordaremos o estudo de condições para que certas equações diferenciais parciais tenham solução. Consideraremos equações do tipo Lu = f; onde tomamos L em algumas classes de campos vetoriais em toros de dimensão maior que dois. Tais campos vetoriais são operadores que agem no espaço das funções definidas no toro e que são infinitamente diferenciáveis. A principal questão é determinar quando tais operadores têm imagem fechada. Temos também interesse em saber quando que a imagem de tais operadores e um subespaço de codimensão finita, bem como estudar a regularidade de tais operadores. As respostas de tais questões envolvem certas propriedades dos coeficientes desses operadores, onde citamos: a conexidade de sub-níveis de primitivas da parte imaginária dos coeficientes; condições Diofantinas; a ordem de anulamento dos coeficientes e relações entre as ordens de anulamento das partes real e imaginária dos coeficientes; além disso, o número de vezes que a parte imaginária de um coeficiente c muda de sinal entre dois zeros consecutivos de c também desempenha um papel. Conseguimos caracterizar a resolubilidade e a hipoelíticidade global de campos vetoriais do tipo tubo em toros de dimensão maior do que dois, estendendo os resultados em dimensão dois. Depois, em dimensões, fornecemos condições que respondem sobre a imagem ser ou não fechada, para uma outra classe de campos vetoriais que não são do tipo tubo. Uma de tais condições esta relacionada com a famosa condição (P) de Nirenberg-Treves. Em particular, obtemos o mesmo para uma classe de campos vetoriais em dimensão são dois, para os quais a codimensão da imagem foi exaustivamente estudada. / We are concerned with the study of properties so that we can solve certain partial differential equations. We will consider equations of the form Lu = f; where we take L in some classes of vector fields on tori of dimension greater than two. This vector fields are viewed as operators acting on the space of smooth functions deffned on the torus. The main questions to study the closedness of the range of L. It is also of interest to know whe ther the range has finite codimension, as well as to study the regularity of L. The answers of these questions are connected with certain properties of the coeffcients of L; such as: Diophantine conditions; the connectedness of some sublevel sets involving primitive so fthe imaginary part of the coeffcients; the order of vanishing of each coeffcient and relations between the order of vanishing of the real and imaginary parts of each coeffcient; in addition, the number of times that the imaginary part of a coeffcient c changes sign between two consecutive zeros of c also plays a role. We characterize both global solvability and hypoellipticity for vector fields of tube type on tori of dimension greater than two, extending the results in dimension two. More over, in dimension three, we find conditions for the closedness of the range for a class of vector fields which are not of tube type. One of theese conditions is related to the well known Nirenberg-Treves condition (P). In particular,we obtain the same for a class of vector fields on the two- torus,for which the codimension of the range was largely studied.
64

Um estudo das componentes simétricas generalizadas em sistemas trifásicos não senoidais /

Costa, Leandro Luiz Húngaro. January 2012 (has links)
Orientador: Paulo José Amaral Serni / Banca: Claudionor Francisco do Nascimento / Banca: Fernando Pinhabel Marafão / Resumo: Este trabalho apresenta um estudo dos fenômenos de desequilíbrio e assimetria que podem ocorrer em sistemas trifásicos, no qual foram estudadas duas abordagens. A primeira delas é a abordagem tradicional de análise de fenômenos de desequilíbrio e assimetria, proposta por Fortescue, denominadas Componentes Simétricas ou Componentes de Sequência. Essa proposta desenvolvida no domínio da frequência foi estudada também no domínio do tempo, após sua adaptação. Isso porque as componentes simétricas generalizadas, nova abordagem de análise de desequilíbrio, está desenvolvida no domínio do tempo. Ambas as propostas de análise do desequilíbrio e assimetria trifásicos são aplicadas à sistemas trifásicos periódicos não senoidais. Enquanto que as componentes simétricas de Fortescue, para serem calculadas, necessitam que o sistema trifásico não senoidal seja decomposto nas harmônicas da série de Fourier, as componentes simétricas generalizadas podem ser aplicadas diretamente ao sistema não senoidal. O desenvolvimento de ambas as abordagens para um sistema periódico não senoidal resulta em relação entre ambas as propostas de análise de desequilíbrio e assimetria As relações entre as componentes simétricas generalizadas e as componentes simétricas de Fortescue são a principal contribuição deste trabalho. Baseado nas componentes simétricas generalizadas, novos indicadores de desequilíbrio são propostos. Os novos indicadores são comparados com os indicadores de desequilíbrio clássicos, os quais foram desenvolvidos a partir da proposta de Fortescue. Por fim, uma aplicação é desenvolvida na qual foram aplicados os conceitos estudados. Nesta aplicação, uma tensão trifásica não senoidal desequilibrada alimenta um motor de indução trifásico / Abstract: This work presents a study of the phenomena of unbalance and asymmetry which may occur in three-phase systems which two approaches were studied. The first one is the traditional approach of analysis of phenomena of unbalance and asymmetry, proposed by Fortescue, called Symmetrical Components or Sequence Components. This proposal developed in the frequency domain was also studied in the time domain after adaptation. This because of the generalized symmetrical components, new approach to the analysis of unbalance and asymmetry is developed in the time domain. Both proposals for analysis if the unbalance and asymmetry in three-phase systems are applied to the periodic non-sinusoidal three-phase systems. While the symmetrical components of Fortescue, to be calculated, require that the non-sinusoidal three-phase system is decomposed into harmonic Fourier series, the generalized symmetrical components can be applied directly to the non-sinusoidal system. The development of both approaches to a periodic non-sinusoidal system results in relationships between both proposals for analysis of unbalance and asymmetry. The relationships between the symmetrical components and the generalized symmetrical components of Fortescue are the main contribution of this work. Based on the generalized symmetrical components, new indicators of unbalance are proposed. The new new indicators are compared with the classical indicators of unbalance, which were developed from the proposed Fortescue. Finally, an application is developed with the concepts studied. In this application, an unbalanced non-sinusoidal three-phase voltage supplies a three-phase induction motor / Mestre
65

Orthogonal Filters and the Implications of Wrapping on Discrete Wavelet Transforms

Bleiler, Sarah K 18 November 2008 (has links)
Discrete wavelet transforms have many applications, including those in image compression and edge detection. Transforms constructed using orthogonal filters are extremely useful in that they can easily be inverted as well as coded. We review the major properties of three well-known orthogonal filters, namely, the Haar, Daubechies, and Coiflet filters. Subsequently, we analyze the Fourier series that corresponds to each of those filters and recall some important results about the smoothness of the modulus of those Fourier series. We consider a specialized case in which the length of the discrete wavelet transform is not much longer than the length of the filter used in its construction. For this case, we prove the existence of additional degrees of freedom in the system of equations used in the construction of the aforementioned orthogonal filters. We suggest a modified Coiflet filter which takes advantage of the extra degrees of freedom by imposing further conditions on the derivative of the Fourier series.
66

Effects of annealing on the residual strains and heat of combustion of cold worked magnesium powder

Phillips, William Hal 03 June 2011 (has links)
Cold worked magnesium powder was investigated to determine the effect of annealing on the residual strains and heat of combustion. The residual rms strains, domain size, and fault probabilities were determined by Fourier analysis of X-ray diffraction data. The heat of combustion was determined by using an adiabatic calorimeter. The results of this study revealed a definite reduction in residual rms strain (0. 0008 to 0. 0003), fault probability (0.0014 to 0. 0001%), and heat of combustion (5662 to 5445 cal/gm) with annealing. The domain size showed an increase from 1400 to 7000 A.Ball State UniversityMuncie, IN 47306
67

Use of the continuous wavelet tranform to enhance early diagnosis of incipient faults in rotating element bearings

Weatherwax, Scott Eric 15 May 2009 (has links)
This thesis focused on developing a new wavelet for use with the continuous wavelet transform, a new detection method and two de-noising algorithms for rolling element bearing fault signals. The work is based on the continuous wavelet transform and implements a unique Fourier Series estimation algorithm that allows for least squares estimation of arbitrary frequency components of a signal. The final results of the research also included use of the developed detection algorithm for a novel method of estimating the center frequency and bandwidth for use with the industry standard detection algorithm, envelope demodulation, based on actual fault data. Finally, the algorithms and wavelets developed in this paper were tested against seven other wavelet based de-noising algorithms and shown to be superior for the de-noising and detection of inner and outer rolling element race faults.
68

Statistical Idealities and Expected Realities in the Wavelet Techniques Used for Denoising

DeNooyer, Eric-Jan D. 01 January 2010 (has links)
In the field of signal processing, one of the underlying enemies in obtaining a good quality signal is noise. The most common examples of signals that can be corrupted by noise are images and audio signals. Since the early 1980's, a time when wavelet transformations became a modernly defined tool, statistical techniques have been incorporated into processes that use wavelets with the goal of maximizing signal-to-noise ratios. We provide a brief history of wavelet theory, going back to Alfréd Haar's 1909 dissertation on orthogonal functions, as well as its important relationship to the earlier work of Joseph Fourier (circa 1801), which brought about that famous mathematical transformation, the Fourier series. We demonstrate how wavelet theory can be used to reconstruct an analyzed function, ergo, that it can be used to analyze and reconstruct images and audio signals as well. Then, in order to ground the understanding of the application of wavelets to the science of denoising, we discuss some important concepts from statistics. From all of these, we introduce the subject of wavelet shrinkage, a technique that combines wavelets and statistics into a "thresholding" scheme that effectively reduces noise without doing too much damage to the desired signal. Subsequently, we discuss how the effectiveness of these techniques are measured, both in the ideal sense and in the expected sense. We then look at an illustrative example in the application of one technique. Finally, we analyze this example more generally, in accordance with the underlying theory, and make some conclusions as to when wavelets are an effective technique in increasing a signal-to-noise ratio.
69

Periodic solutions to the n-body problem

Dyck, Joel A. 07 October 2015 (has links)
This thesis develops methods to identify periodic solutions to the n-body problem by representing gravitational orbits with Fourier series. To find periodic orbits, a minimization function was developed that compares the second derivative of the Fourier series with Newtonian gravitation acceleration and modifies the Fourier coefficients until the orbits match. Software was developed to minimize the function and identify the orbits using gradient descent and quadratic curves. A Newtonian gravitational simulator was developed to read the initial orbit data and numerically simulate the orbits with accurate motion integration, allowing for comparison to the Fourier series orbits and investigation of their stability. The orbits found with the programs correlate with orbits from literature, and a number remain stable when simulated. / February 2016
70

Fourier neural network based tracking control for nonlinear systems /

Zuo, Wei. January 2008 (has links)
Thesis (Ph.D.)--Hong Kong University of Science and Technology, 2008. / Includes bibliographical references (leaves 131-143). Also available in electronic version.

Page generated in 0.1078 seconds