Spelling suggestions: "subject:"fourier method"" "subject:"courier method""
11 |
The Fourier-finite-element method with Nitsche-mortaringHeinrich, Bernd, Jung, Beate 01 September 2006 (has links)
The paper deals with a combination of the
Fourier-finite-element method with the
Nitsche-finite-element method (as a mortar method).
The approach is applied to the Dirichlet problem
of the Poisson equation in three-dimensional
axisymmetric domains $\widehat\Omega$ with
non-axisymmetric data. The approximating Fourier
method yields a splitting of the 3D-problem into
2D-problems. For solving the 2D-problems on the
meridian plane $\Omega_a$,
the Nitsche-finite-element method with
non-matching meshes is applied. Some important
properties of the approximation scheme are
derived and the rate of convergence in some
$H^1$-like norm is proved to be of the type
${\mathcal O}(h+N^{-1})$ ($h$: mesh size on
$\Omega_a$, $N$: length of the Fourier sum) in
case of a regular solution of the boundary value
problem. Finally, some numerical results are
presented.
|
12 |
Seismic modeling and imaging with Fourier method : numerical analyses and parallel implementation strategiesChu, Chunlei, 1977- 13 June 2011 (has links)
Our knowledge of elastic wave propagation in general heterogeneous media with complex geological structures comes principally from numerical simulations. In this dissertation, I demonstrate through rigorous theoretical analyses and comprehensive numerical experiments that the Fourier method is a suitable method of choice for large scale 3D seismic modeling and imaging problems, due to its high accuracy and computational efficiency. The most attractive feature of the Fourier method is its ability to produce highly accurate solutions on relatively coarser grids, compared with other numerical methods for solving wave equations. To further advance the Fourier method, I identify two aspects of the method to focus on in this work, i.e., its implementation on modern clusters of computers and efficient high-order time stepping schemes. I propose two new parallel algorithms to improve the efficiency of the Fourier method on distributed memory systems using MPI. The first algorithm employs non-blocking all-to-all communications to optimize the conventional parallel Fourier modeling workflows by overlapping communication with computation. With a carefully designed communication-computation overlapping mechanism, a large amount of communication overhead can be concealed when implementing different kinds of wave equations. The second algorithm combines the advantages of both the Fourier method and the finite difference method by using convolutional high-order finite difference operators to evaluate the spatial derivatives in the decomposed direction. The high-order convolutional finite difference method guarantees a satisfactory accuracy and provides the flexibility of using non-blocking point-to-point communications for efficient interprocessor data exchange and the possibility of overlapping communication and computation. As a result, this hybrid method achieves an optimized balance between numerical accuracy and computational efficiency. To improve the overall accuracy of time domain Fourier simulations, I propose a family of new high-order time stepping schemes, based on a novel algorithm for designing time integration operators, to reduce temporal derivative discretization errors in a cost-effective fashion. I explore the pseudo-analytical method and propose high-order formulations to further improve its accuracy and ability to deal with spatial heterogeneities. I also extend the pseudo-analytical method to solve the variable-density acoustic and elastic wave equations. I thoroughly examine the finite difference method by conducting complete numerical dispersion and stability analyses. I comprehensively compare the finite difference method with the Fourier method and provide a series of detailed benchmarking tests of these two methods under a number of different simulation configurations. The Fourier method outperforms the finite difference method, in terms of both accuracy and efficiency, for both the theoretical studies and the numerical experiments, which provides solid evidence that the Fourier method is a superior scheme for large scale seismic modeling and imaging problems. / text
|
13 |
Strömungsbeeinflussung in Flüssigmetallen durch rotierende und wandernde MagnetfelderKoal, Kristina 29 June 2011 (has links) (PDF)
Ziel der vorliegenden Arbeit ist es, Rühr- und Mischungsvorgänge in Flüssigmetallströmungen zu untersuchen, die mittels rotierender und wandernder Magnetfelder bzw. deren Kombination induziert werden. Im Mittelpunkt steht dabei die Charakterisierung der dreidimensionalen Strömungsstrukturen innerhalb zylindrischer Geometrien bei der Verwendung überkritischer Magnetfelder.
Neben der Untersuchung der Strömungseigenschaften stellen die physikalische Modellierung der angreifenden Kräfte, die geeignete Wahl und Validierung eines effizienten numerischen Lösungsverfahrens und dessen Erweiterung für die Durchführung von Large Eddy Simulationen wesentliche Eckpfeiler dieser Arbeit dar.
|
14 |
Strömungsbeeinflussung in Flüssigmetallen durch rotierende und wandernde MagnetfelderKoal, Kristina 27 May 2011 (has links)
Ziel der vorliegenden Arbeit ist es, Rühr- und Mischungsvorgänge in Flüssigmetallströmungen zu untersuchen, die mittels rotierender und wandernder Magnetfelder bzw. deren Kombination induziert werden. Im Mittelpunkt steht dabei die Charakterisierung der dreidimensionalen Strömungsstrukturen innerhalb zylindrischer Geometrien bei der Verwendung überkritischer Magnetfelder.
Neben der Untersuchung der Strömungseigenschaften stellen die physikalische Modellierung der angreifenden Kräfte, die geeignete Wahl und Validierung eines effizienten numerischen Lösungsverfahrens und dessen Erweiterung für die Durchführung von Large Eddy Simulationen wesentliche Eckpfeiler dieser Arbeit dar.
|
Page generated in 0.0557 seconds