Spelling suggestions: "subject:"fpga"" "subject:"pga""
141 |
BIT STREAM MODIFICATION TO IMPROVE THE DEBUGGING CAPABILITIES OF RE CONFIGURABLE COMPUTING SYSTEMSMUSLEHUDDIN, FAISAL January 2002 (has links)
No description available.
|
142 |
DESIGN OF A PROGRAMMABLE ROUTING FRAMEWORK FOR MULTI-TECHNOLOGY FIELD PROGRAMMABLE GATE ARRAYHAWK, CHRISTOPHER J. 31 March 2004 (has links)
No description available.
|
143 |
A HARDWARE IMPLEMENTATION FOR MULTIPLE BACKTRACING ALGORITHMLU, FEI January 2005 (has links)
No description available.
|
144 |
A TILED FPGA ARCHITECTURE FOR POWER-AWARE COMPUTATIONSYAN, JIANPING 03 October 2006 (has links)
No description available.
|
145 |
AN EVENT-BASED APPROACH TO DEMAND-DRIVEN DYNAMIC RECONFIGURABLE COMPUTINGLEE, TAI-CHUN 11 October 2001 (has links)
No description available.
|
146 |
FPGA-Based Coherent Doppler Processor for Marine Radar ApplicationsAbdelbagi, Hamdi Eltayib 18 May 2016 (has links)
No description available.
|
147 |
ChipCflow - uma ferramenta para execução de algoritmos utilizando o modelo a fluxo de dados dinâmico em hardware reconfigurável - operadores e grafos a fluxo de dados / ChipCflow - tool for implementing of algorithms using the dataflow model in dynamic reconfigurable hardware - Operators and the dataflow graphsCorreia, Vasco Martins 25 March 2009 (has links)
ChipCflow é o projeto de uma ferramenta para execução de algoritmos escritos em linguagem C utilizando o modelo a fluxo de dados dinâmico em hardware com reconfiguração parcial. O objetivo principal do projeto ChipCflow é a aceleração da execução de programas por meio da execução direta em hardware, aproveitando ao máximo o paralelismo considerado natural do modelo a fluxo de dados. Em particular nesta parte do projeto, realizou-se a prova de conceito para a programação a fluxo da dados em hardware reconfigurável. O modelo de fluxo de dados utilizado foi o estático em plataforma sem reconfiguração parcial, dada a complexidade desse sistema, que faz parte de outro módulo em desenvolvimento no projeto ChipCflow / In order to convert C Language into hardware, a ChipCflow project, is a fundamental element to be used. In particular, dynamic dataflow architecture can be generated to produce a high level of parallelism to be executed into a partial reconfigurable hardware. Because of the complexity of the partial reconfigurable system, in this part of the project, a poof-of-concept was described as a program to be executed in a static reconfigurable hardware. The partial reconfiguration is a focus on another part of the ChipCflow project
|
148 |
ChipCflow - uma ferramenta para execução de algoritmos utilizando o modelo a fluxo de dados dinâmico em hardware reconfigurável - operadores e grafos a fluxo de dados / ChipCflow - tool for implementing of algorithms using the dataflow model in dynamic reconfigurable hardware - Operators and the dataflow graphsVasco Martins Correia 25 March 2009 (has links)
ChipCflow é o projeto de uma ferramenta para execução de algoritmos escritos em linguagem C utilizando o modelo a fluxo de dados dinâmico em hardware com reconfiguração parcial. O objetivo principal do projeto ChipCflow é a aceleração da execução de programas por meio da execução direta em hardware, aproveitando ao máximo o paralelismo considerado natural do modelo a fluxo de dados. Em particular nesta parte do projeto, realizou-se a prova de conceito para a programação a fluxo da dados em hardware reconfigurável. O modelo de fluxo de dados utilizado foi o estático em plataforma sem reconfiguração parcial, dada a complexidade desse sistema, que faz parte de outro módulo em desenvolvimento no projeto ChipCflow / In order to convert C Language into hardware, a ChipCflow project, is a fundamental element to be used. In particular, dynamic dataflow architecture can be generated to produce a high level of parallelism to be executed into a partial reconfigurable hardware. Because of the complexity of the partial reconfigurable system, in this part of the project, a poof-of-concept was described as a program to be executed in a static reconfigurable hardware. The partial reconfiguration is a focus on another part of the ChipCflow project
|
149 |
Techniques for Efficient Implementation of FIR and Particle FilteringAlam, Syed Asad January 2016 (has links)
FIR filters occupy a central place many signal processing applications which either alter the shape, frequency or the sampling frequency of the signal. FIR filters are used because of their stability and possibility to have linear-phase but require a high filter order to achieve the same magnitude specifications as compared to IIR filters. Depending on the size of the required transition bandwidth the filter order can range from tens to hundreds to even thousands. Since the implementation of the filters in digital domain requires multipliers and adders, high filter orders translate to a large number of these arithmetic units for its implementation. Research towards reducing the complexity of FIR filters has been going on for decades and the techniques used can be roughly divided into two categories; reduction in the number of multipliers and simplification of the multiplier implementation. One technique to reduce the number of multipliers is to use cascaded sub-filters with lower complexity to achieve the desired specification, known as FRM. One of the sub-filters is a upsampled model filter whose band edges are an integer multiple, termed as the period L, of the target filter's band edges. Other sub-filters may include complement and masking filters which filter different parts of the spectrum to achieve the desired response. From an implementation point-of-view, time-multiplexing is beneficial because generally the allowable maximum clock frequency supported by the current state-of-the-art semiconductor technology does not correspond to the application bound sample rate. A combination of these two techniques plays a significant role towards efficient implementation of FIR filters. Part of the work presented in this dissertation is architectures for time-multiplexed FRM filters that benefit from the inherent sparsity of the periodic model filters. These time-multiplexed FRM filters not only reduce the number of multipliers but lowers the memory usage. Although the FRM technique requires a higher number delay elements, it results in fewer memories and more energy efficient memory schemes when time-multiplexed. Different memory arrangements and memory access schemes have also been discussed and compared in terms of their efficiency when using both single and dual-port memories. An efficient pipelining scheme has been proposed which reduces the number of pipelining registers while achieving similar clock frequencies. The single optimal point where the number of multiplications is minimum for non-time-multiplexed FRM filters is shown to become a function of both the period, L and time-multiplexing factor, M. This means that the minimum number of multipliers does not always correspond to the minimum number of multiplications which also increases the flexibility of implementation. These filters are shown to achieve power reduction between 23% and 68% for the considered examples. To simplify the multiplier, alternate number systems like the LNS have been used to implement FIR filters, which reduces the multiplications to additions. FIR filters are realized by directly designing them using ILP in the LNS domain in the minimax sense using finite word length constraints. The branch and bound algorithm, a typical algorithm to implement ILP problems, is implemented based on LNS integers and several branching strategies are proposed and evaluated. The filter coefficients thus obtained are compared with the traditional finite word length coefficients obtained in the linear domain. It is shown that LNS FIR filters provide a better approximation error compared to a standard FIR filter for a given coefficient word length. FIR filters also offer an opportunity in complexity reduction by implementing the multipliers using Booth or standard high-radix multiplication. Both of these multiplication schemes generate pre-computed multiples of the multiplicand which are then selected based on the encoded bits of the multiplier. In TDF FIR filters, one input data is multiplied with a number of coefficients and complexity can be reduced by sharing the pre-computation of the multiplies of the input data for all multiplications. Part of this work includes a systematic and unified approach to the design of such computation sharing multipliers and a comparison of the two forms of multiplication. It also gives closed form expressions for the cost of different parts of multiplication and gives an overview of various ways to implement the select unit with respect to the design of multiplexers. Particle filters are used to solve problems that require estimation of a system. Improved resampling schemes for reducing the latency of the resampling stage is proposed which uses a pre-fetch technique to reduce the latency between 50% to 95% dependent on the number of pre-fetches. Generalized division-free architectures and compact memory structures are also proposed that map to different resampling algorithms and also help in reducing the complexity of the multinomial resampling algorithm and reduce the number of memories required by up to 50%.
|
150 |
On the Use of Rapid Prototyping for Designing PCM/FM Demodulators in FPGASRice, Michael, Nelson, Brent, Padilla, Marc, Havican, Jared 10 1900 (has links)
ITC/USA 2010 Conference Proceedings / The Forty-Sixth Annual International Telemetering Conference and Technical Exhibition / October 25-28, 2010 / Town and Country Resort & Convention Center, San Diego, California / This paper describes the use of an efficient FPGA design flow, called Ogre, developed at BYU to design and implement PCM/FM demodulators. Ogre exploits the notion of reuse by taking advantage of a library of specially designed cores parameterized by XML metadata. A judicious choice of library cores, targeted to signal processing functions common to sampled data modulators and demodulators, reduces the design and test cycle time. We demonstrate this by using the tool to construct rapid prototypes of three different versions of FM demodulators and show that the bit error rate performance is comparable to demodulators on the market today.
|
Page generated in 0.0294 seconds