• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 157
  • 87
  • 20
  • 18
  • 15
  • 12
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • Tagged with
  • 355
  • 80
  • 58
  • 45
  • 43
  • 39
  • 29
  • 24
  • 23
  • 21
  • 20
  • 20
  • 18
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Linha divisórias de águas e fraturas de caminhos ótimos em meios desordenados / Watersheds and optimal path cracks in disordered media

Oliveira, Erneson Alves de January 2012 (has links)
OLIVEIRA, Erneson Alves de. Linha divisórias de águas e fraturas de caminhos ótimos em meios desordenados. 2012. 123 f. Tese (Doutorado em Física) - Programa de Pós-Graduação em Física, Departamento de Física, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2012. / Submitted by Edvander Pires (edvanderpires@gmail.com) on 2014-11-03T20:10:31Z No. of bitstreams: 1 2012_tese_eaoliveira.pdf: 18712063 bytes, checksum: 4955bd8140f2c8bca266f8de55700a24 (MD5) / Approved for entry into archive by Edvander Pires(edvanderpires@gmail.com) on 2014-11-03T20:11:42Z (GMT) No. of bitstreams: 1 2012_tese_eaoliveira.pdf: 18712063 bytes, checksum: 4955bd8140f2c8bca266f8de55700a24 (MD5) / Made available in DSpace on 2014-11-03T20:11:42Z (GMT). No. of bitstreams: 1 2012_tese_eaoliveira.pdf: 18712063 bytes, checksum: 4955bd8140f2c8bca266f8de55700a24 (MD5) Previous issue date: 2012 / In the nature all material breaks down depending on the value of stress applied. Depending of kind, shape and other characteristics of the material or even the stress point, we can produce distinct {it fractures}, like a tear on stressed sheet of paper, a congestion in the network traffic of a city or cracked soils by arid climates. Such fractures are economically related with the extraction of oil from the underground reservoirs, with the extraction of heat and steam from geothermal reservoirs and even the preservation of the groundwater. Phenomenologically, we can imagine that fracture processes are the ones that divides the system in two or more parts, destroying its global connectivity. In this context, we built two computer models to study, characterize and elucidate the behavior of natural phenomena similar to fracture processes. In the first model, we explored concepts of invasion percolation applied to description of the irregular geometry of the ridge of mountains that divides hydrographic basins. We shown robustly the self-similar nature of the watershed lines, with fractal exponent $D=1.21pm0.001$ for artificial uncorrelated landscapes and, $D=1.10pm0.01$ and $D=1.11pm0.01$, for real correlated landscapes of the Swiss Alps and the Himalaya Mountains, respectively. In the second model, we used optimal paths that are cracked sequentialy providing the collapse of the system, producing a percolating fracture. In the two-dimensional case, we considered artificial uncorrelated landscapes in the weak and strong disorder. In both regimes, we obtained the same fractal exponent for the backbone fracture, $D=1.22pm0.01$. For artificial correlated landscapes, we found that the fractal dimension of the backbone decreases with increasing of the {it Hurst} exponent. In the three-dimensional case, we considered only artificial uncorrelated landscapes with strong disorder. In this case, we obtained a percolating surface with fractal dimension $D=2.47pm0.05$ that cracks the system in two parts. / Na natureza todo material se quebra dependendo do valor de tensão aplicada. Dependendo do tipo, forma e outras características do material ou até mesmo do ponto de tensão, podemos produzir {it fraturas} distintas, como um rasgo em uma folha de papel tensionada, um congestionamento na rede de trânsito de uma cidade ou solos rachados por climas áridos. Tais fraturas se relacionam economicamente com a extração de petróleo de reservatórios subterrâneos, com a extração de calor e vapor de reservatórios geotérmicos e até mesmo com a preservação dos lençóis freáticos. Fenomenologicamente, podemos imaginar que processos de fraturas são aqueles que dividem o sistema em duas ou mais partes, destruindo sua conectividade global. Nesse contexto, construímos dois modelos computacionais para estudar, caracterizar e elucidar o comportamento de fenômenos naturais semelhantes aos processos de fraturas. No primeiro modelo, exploramos conceitos de percolação invasiva aplicados à descrição da geometria irregular das cumeeiras de montanhas que dividem bacias hidrográficas. Mostramos de forma robusta o carácter auto-similar das linhas de divisores de águas, com expoente fractal $D=1.21pm0.001$ para paisagens artificiais não-correlacionadas e, $D=1.10pm0.01$ e $D=1.11pm0.01$ para paisagens correlacionadas reais dos Alpes Suíços e das Montanhas do Himalaia, respectivamente. No segundo modelo, utilizamos caminhos ótimos que são sequencialmente interrompidos, levando ao colapso do sistema, produzindo uma fratura percolante. No caso bidimensional, consideramos paisagens artificiais não-correlacionadas com desordem fraca e forte. Em ambos os regimes obtivemos o mesmo expoente fractal para o esqueleto da fratura, $D=1.22pm0.01$. Para paisagens artificiais correlacionadas, encontramos que a dimensão fractal do esqueleto da fratura decresce com o aumento do expoente de {it Hurst}. No caso tridimensional, consideramos apenas paisagens não-correlacionadas artificiais com desordem forte. Nesse caso, obtivemos uma superfície percolante com dimensão fractal $D=2.47pm0.05$ que fratura o sistema em duas partes.
152

Fenômenos de Transporte em Meios Porosos e Interfaces Fractais / Transport Phenomena in Porous Media and Fractal Interfaces

Costa, Marcelo Henrique de Araújo Santos January 2006 (has links)
COSTA, Marcelo Henrique de Araújo Santos. Fenômenos de Transporte em Meios Porosos e Interfaces Fractais. 2006. 103 f. Tese (Doutorado em Física) - Programa de Pós-Graduação em Física, Departamento de Física, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2006. / Submitted by Edvander Pires (edvanderpires@gmail.com) on 2015-05-22T18:08:10Z No. of bitstreams: 1 2006_tese_mhascosta.pdf: 4361476 bytes, checksum: d1ad57b4bdfc1adb7ee1dc8cafc3333d (MD5) / Approved for entry into archive by Edvander Pires(edvanderpires@gmail.com) on 2015-05-22T20:04:44Z (GMT) No. of bitstreams: 1 2006_tese_mhascosta.pdf: 4361476 bytes, checksum: d1ad57b4bdfc1adb7ee1dc8cafc3333d (MD5) / Made available in DSpace on 2015-05-22T20:04:44Z (GMT). No. of bitstreams: 1 2006_tese_mhascosta.pdf: 4361476 bytes, checksum: d1ad57b4bdfc1adb7ee1dc8cafc3333d (MD5) Previous issue date: 2006 / In this work, we investigate different transport phenomena through irregular media by means of numerical simulations. Initially, we study the effect of the critical percolation disorder on pore networks under diffusion-reaction conditions. Our results indicate the existence of three distinct regimes of reactivity, determined by the dimensionless parameter E=D/(Kl^2), where D is the molecular diffusivity of the reagent, K is its chemical reaction coefficient, and l is the length scale of the pore. At low values of E, the flux of the reacting species penetrating the network follows the classical scaling behavior, namely F~LE^(1/2). At intermediate values of E, the influence of the fractal morphology of the percolating cluster results in an anomalous behavior, F~L^(A/2)E^B, with an exponent B=0.34. At high values of E, the flux of the reagent reaches a saturation limit, F_SAT, that scales with the system size as F_SAT=L^A, with an exponent A=1.89, corresponding to the fractal dimension of the sample-spanning cluster. In the second part of this work, we study how the irregularity of the geometry influences the sequential deactivation of an interface accessed by diffusion. By using the notion of active zone, we propose a conjecture which constitutes an extension of Makarov theorem. In the third part, we investigate the steady-state heat transport in a fluid flowing through a two-dimensional channel whose walls are irregular interfaces. Once more, we apply the notion of active zone to investigate the effect of the interface geometry on the heat exchange efficiency of the system for different conductive-convective conditions. Compared with the behavior of a channel with smooth interfaces and under conditions in which the mechanism of heat conduction dominates, the results indicate that the effect of roughness is almost negligible on the efficiency of the heat transport system. On the other hand, when the convection becomes dominant, the role of the interface roughness is to generally increase both the heat flux across the wall as well as the active length of heat exchange, when compared with the smooth channel. Finally, we show that this last behavior is closely related with the presence of recirculation zones in the reentrant regions of the fractal geometry. / Neste trabalho investigamos diversos fenômenos de transporte tendo lugar através de meios irregulares por meio de simulação computacional. Inicialmente, tratamos do efeito da desordem crítica em redes percolantes de poros sujeitas à difusão e reação química. Verificamos a existência de três regimes distintos, determinados pelo parâmetro adimensional E=D/(Kl^2), onde D é a difusão molecular, K o coeficiente de reação química e l um comprimento característico. Para valores baixos de E, o fluxo de reagente que penetra a rede obedece à relação de escala clássica, F~LE^(1/2). Para valores intermediários de E, a influência da morfologia fractal do agregado de percolação resulta em um regime anômalo, F~L^(A/2)E^B, com um expoente B=0.34. Para valores altos de E, o fluxo de reagente atinge um limite de saturação, F_SAT, e escala com o tamanho do sistema na forma F_SAT=L^A, onde A=1.89 corresponde à dimensão fractal do agregado incipiente de percolação. Em uma segunda etapa do trabalho, analisamos o efeito da geometria irregular na desativação seqüencial de uma interface acessada por difusão. Aplicando o conceito de zona ativa, propomos uma conjectura que se constitui numa extensão do teorema de Makarov. Na terceira parte deste trabalho, investigamos o transporte estacionário de calor no escoamento de um fluido através de um tubo bidimensional, cujas paredes são interfaces irregulares. Mais uma vez, utilizando o conceito de zona ativa, investigamos o efeito da geometria da interface na eficiência de troca térmica do sistema em diferentes condições difusivo-convectivas. Em condições nas quais o mecanismo de transporte dominante é a condução, a comparação entre os resultados dos tubos liso e rugosos indica que o efeito da rugosidade é quase desprezível sobre a eficiência de dispositivos de transporte de calor. Por outro lado, quando a convecção torna-se dominante, a rugosidade passa a ter um papel importante e, em geral, o fluxo de calor e o comprimento da zona ativa aumentam com a rugosidade da interface de troca. Finalmente, mostramos que esse último comportamento está relacionado com as zonas de recirculação, presentes nas reentrâncias da geometria fractal.
153

Correlações e interações de longo alcance em meios desordenados: linhas costeiras e transição de Anderson / Correlations and long-range interactions in disordered media: shorelines and Anderson transition

Morais, Pablo Abreu de January 2012 (has links)
MORAIS, Pablo Abreu de. Correlações e interações de longo alcance em meios desordenados: linhas costeiras e transição de Anderson. 2012. 117 f. Tese (Doutorado em Física) - Programa de Pós-Graduação em Física, Departamento de Física, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2012. / Submitted by Edvander Pires (edvanderpires@gmail.com) on 2015-10-22T18:47:42Z No. of bitstreams: 1 2012_tese_pamorais.pdf: 35280964 bytes, checksum: 5f9fe894e56c156657d642fac9435302 (MD5) / Approved for entry into archive by Edvander Pires(edvanderpires@gmail.com) on 2015-10-22T21:32:50Z (GMT) No. of bitstreams: 1 2012_tese_pamorais.pdf: 35280964 bytes, checksum: 5f9fe894e56c156657d642fac9435302 (MD5) / Made available in DSpace on 2015-10-22T21:32:50Z (GMT). No. of bitstreams: 1 2012_tese_pamorais.pdf: 35280964 bytes, checksum: 5f9fe894e56c156657d642fac9435302 (MD5) Previous issue date: 2012 / Many physical phenomena have strong dependence on the disorder of the medium in which they occur. The {it Anderson} theory localization, for example, states that the introduction of disorder in electronic systems can promote the metal-insulator transition, also known as {it Anderson} transition. However, for low dimensional systems, according to the same theory, any finite degree of uncorrelated disorder is able to promote the exponential localization of all electronic functions. The general {it Anderson} theory localization is violated when long-range correlations and long-range interactions are used. In this scenario, the metal-insulator transition also occurs for low dimensional systems. In network problems, the long-range connections are responsible for the short average distance between individuals belonging to the same social network. This phenomenon is popularly known as six degrees of separation. Furthermore, {it Kleinberg} showed that the introduction of a power-law distribution of long-range links in a network produces a minimum in the transmission time information from a source site to a target site network . In this thesis, we investigate how the long-range disorder changes the universality class of two mathematical models that represent the following physical problems: the erosion process in correlated landscapes and the delocalization-localization transition of the normal modes of a harmonic chain with long range connections restricted by a cost function. In the first model, we show that long-range spatial correlations in the geological properties of the coast, in the critical regime of our model, generates a spectrum of fractals shorelines whose fractal dimensions vary between {it D} = 1.33 and 1.00 when we vary the {it Hurst} exponent in the range $0< H <1$. Furthermore, when we use uncorrelated surfaces, the shoreline, for very intense sea erosion, are self-affine and belong to the same universality class of the interfaces described by the equation of {it Kardar-Parisi-Zhang} ({it KPZ}). In the second model, we show that long-range links in a chain harmonic inserted with a probability with decreasing size of the bond, $p sim r^{-alpha}$, restricted by a cost function proportional to chain length, promotes a delocalization-localization transition of the normal modes for the exponent $ alpha simeq 1.25$. / Muitos fenômenos físicos têm forte dependência da desordem do meio no qual ocorrem. A teoria de localização de Anderson, por exemplo, estabelece que a introdução de desordem em sistemas eletrônicos pode promover a transição metal-isolante, também conhecida como transição de Anderson. Contudo, para sistemas de baixa dimensionalidade, segundo essa mesma teoria, qualquer grau finito de desordem pode promover a localização exponencial de todas as funções eletrônicas. No entanto, foi mostrado que a teoria geral de localização de Anderson é violada quando correlações e interações de longo alcance são utilizadas. Nesse cenário, a transição metal-isolante ocorre também para sistemas de baixa dimensionalidade. Nos problemas relacionados com redes, as ligações de longo alcance são responsáveis pela pequena distância média entre indivíduos pertencentes à mesma rede social. Esse fenômeno é popularmente conhecido como os seis graus de separação. Além disso, Kleinberg mostrou que a introdução de uma distribuição em lei de potência de ligações de longo alcance em uma rede substrato gera um mínimo no tempo de envio de uma informação de um sítio fonte a um sítio alvo da rede. Nesta tese, investigamos como a desordem de longo alcance altera a classe de universalidade de dois modelos matemáticos que representam os seguintes problemas físicos: o processo de erosão na costa de paisagens correlacionadas e a transição deslocalização-localização dos modos normais de vibração de uma cadeia harmônica com ligações de longo alcance restritas por uma função custo. No primeiro modelo, mostramos que correlações espaciais de longo alcance nas propriedades geológicas da costa, no regime crítico do nosso modelo, gera um espectro de linhas costeiras fractais cujas dimensões fractais variam entre D=1.33 e 1.00 quando variamos o expoente de Hurst no intervalo 0.
154

O nexo geometria fractal - produção da ciência contemporânea tomado como núcleo do currículo de matemática do ensino básico

Baier, Tânia [UNESP] 21 February 2005 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:31:42Z (GMT). No. of bitstreams: 0 Previous issue date: 2005-02-21Bitstream added on 2014-06-13T18:42:42Z : No. of bitstreams: 1 baier_t_dr_rcla.pdf: 3138210 bytes, checksum: 6a3b90ff257e39970340d208660ea724 (MD5) / Nesta tese é desenvolvida a proposta de trabalhar a Matemática no Ensino Básico segundo as concepções da ciência contemporânea. Tomou-se a Física Clássica e a Moderna e as respectivas teorias matemáticas por elas utilizadas, buscando-se explicitar as visões de homem, de mundo, de conhecimento e de ciência por elas assumidas. Privilegiou-se, nesta análise, a contraposição da ciência mecanicista em relação à sistêmica. Na primeira, o destaque sendo dado à separação sujeito/objeto, à representação do espaço físico como sendo apenas o euclidiano, ao cálculo exato, priorizando, portanto, os aspectos quantitativos da Matemática. A metáfora que diz dessa concepção é a da máquina. Na sistêmica, a metáfora que a expressa é a da rede, que diz da impossibilidade de separar o sujeito que conhece do objeto conhecido e da inexistência de uma hierarquia de a prioris. Nesta abordagem, foi destacada a importância dos padrões que emergem pelos processos iterativos, os quais geram, também, objetos fractais. O tratamento matemático estende-se do quantitativo ao qualitativo. Com a emergência do pensamento sistêmico, dá-se conta da ameaça que se anuncia à permanência da vida no planeta. Nesta investigação buscou-se trabalhar o núcleo do que está na ameaça, entendida como decorrente de praticar-se a postura mecanicista à exaustão, mostrando-se uma possibilidade de neutralizá-la por meio da adoção da postura fenomenológica, pela realização de ser-se cuidado. Ele foi tomado como central à atividade educadora articulada com a visão sistêmica da ciência. / This thesis develops a proposition about working with Mathematics in Basic Teaching (Elementary and High School), according to the conceptions of contemporary science. Classical and Modern Physics, as the mathematical theories used by those, were taken, searching to explain the visions of man, of world, of knowledge and science assumed by them. This analysis priviledges the confrontation of mechanicist science in relation to the systemic science. In the first one, the emphasis is given to the separation subject/object, to the representation of physical space as only being the Euclidian one, to the exact calculation, thus priorizing the quantitatives aspects of Mathematics. The metaphor which talks about this conception is the machine. In the systemic science, the metaphor which express it is the web, which talks about the impossibility of separating the knowing subject from the known object and the inexistence of a hierarchy of a priori. This approach has emphasized the importance of patterns emerged by the iterative processes which generate, also, fractal objects. The Mathematical treatment extend from quantitative to qualitative. With the emergency of systemic thought, one take into account the threat announced to the permanence of life on the planet. This research aimed to work over what lays in that threat, understood as a result of practicing the mechanicist attitude to the exhaustion, showing a possibility of neutralize it by the adoption of the phenomenological posture, by the achievement of one-self-being care. It was taken as central to the educational activity, articulated with the science systemic vision.
155

A geometria fractal como fator minimizador das dificuldades referentes a conceitos geométricos / The fractal geometry as a factor for minimizing difficulties related to geometric concepts

Luz, Emanueli Vallini da [UNESP] 12 August 2016 (has links)
Submitted by EMANUELI VALLINI DA LUZ null (manuvallini@hotmail.com) on 2016-09-05T16:03:06Z No. of bitstreams: 1 LUZ_Emanueli Vallini.pdf: 1946551 bytes, checksum: fddaa535ea085475a08b5129e3c35fa6 (MD5) / Rejected by Juliano Benedito Ferreira (julianoferreira@reitoria.unesp.br), reason: Solicitamos que realize uma nova submissão seguindo as orientações abaixo: No campo “Versão a ser disponibilizada online imediatamente” foi informado que seria disponibilizado o texto completo porém no campo “Data para a disponibilização do texto completo” foi informado que o texto completo deverá ser disponibilizado apenas 6 meses após a defesa. Caso opte pela disponibilização do texto completo apenas 6 meses após a defesa selecione no campo “Versão a ser disponibilizada online imediatamente” a opção “Texto parcial”. Esta opção é utilizada caso você tenha planos de publicar seu trabalho em periódicos científicos ou em formato de livro, por exemplo e fará com que apenas as páginas pré-textuais, introdução, considerações e referências sejam disponibilizadas. Se optar por disponibilizar o texto completo de seu trabalho imediatamente selecione no campo “Data para a disponibilização do texto completo” a opção “Não se aplica (texto completo)”. Isso fará com que seu trabalho seja disponibilizado na íntegra no Repositório Institucional UNESP. Por favor, corrija esta informação realizando uma nova submissão. Agradecemos a compreensão. on 2016-09-08T20:12:51Z (GMT) / Submitted by EMANUELI VALLINI DA LUZ null (manuvallini@hotmail.com) on 2016-09-08T21:30:00Z No. of bitstreams: 1 LUZ_Emanueli Vallini.pdf: 1946551 bytes, checksum: fddaa535ea085475a08b5129e3c35fa6 (MD5) / Approved for entry into archive by Juliano Benedito Ferreira (julianoferreira@reitoria.unesp.br) on 2016-09-09T13:45:10Z (GMT) No. of bitstreams: 1 luz_ev_me_sjrp.pdf: 1946551 bytes, checksum: fddaa535ea085475a08b5129e3c35fa6 (MD5) / Made available in DSpace on 2016-09-09T13:45:10Z (GMT). No. of bitstreams: 1 luz_ev_me_sjrp.pdf: 1946551 bytes, checksum: fddaa535ea085475a08b5129e3c35fa6 (MD5) Previous issue date: 2016-08-12 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / É incontestável a importância da Geometria Euclidiana para a vida e a evolução da humanidade, e em consequência da defasagem dos alunos em relação a este conteúdo, o presente trabalho, desenvolvido no âmbito da Educação Matemática, iniciou-se com a finalidade de inserir a Geometria Fractal no ensino básico, de modo a viabilizar o processo de ensino e aprendizagem de conceitos da Geometria Clássica, minimizando as dificuldades e promovendo reflexões a respeito da sua generalização, visto que o conhecimento da Geometria Fractal permite observar e arquitetar a noção geométrica. Para embasar nossa pesquisa, nos pautamos nas obras de autores que acreditam no emprego em sala de aula da Geometria Fractal, como forma de promover um ensino geométrico eficaz, do mesmo modo, possibilita o desenvolvimento da capacidade crítica e criativa do aluno, assim como seu senso estético. Partindo dessa hipótese e tendo como sujeitos de pesquisa os alunos do Ensino Médio de uma escola estadual do interior do Estado de São Paulo, optou-se por aplicar duas atividades, a construção, com o uso de régua e compasso, do fractal clássico triângulo de Sierpinski, e a construção do cartão fractal Degraus Centrais, de modo a trabalhar conceitos geométricos de forma contextualizada e diversificada. Verificou-se por meio do questionário diagnóstico, respondido antes da realização das atividades, um baixo rendimento frente aos conceitos da Geometria Euclidiana, após as atividades propostas foi possível verificar, por meio de questionário similar ao inicial, uma melhora significativa nos índices avaliados. Portanto no que se refere aos resultados, pode-se constatar que a Geometria Fractal pode apresentar resultados satisfatórios ao ser aplicada no Ensino da Matemática, visto que pode ser empregada não somente como estímulo para que o aluno apresente interesse pela Matemática, mas também como elemento facilitador da aprendizagem. / It is incontestable the importance of Euclidean geometry and the evolution of humanity and in consequence of the gap of students in relation to this content, this study, developed within the Mathematics Education, it began with the purpose of inserting the fractal Geometry in a basic education, so to facilitate the process of teaching and learning concepts of classical geometry, because the knowledge of fractal geometry allows us to observe and architect in the geometric sense. To support our search, with base in the works of authors who believe in the job in the classroom of fractal geometry, as a means of promoting effective geometric education, likewise, allows the development of critical and creative capacity of the student, as well as its aesthetic sense. Based on this hypothesis, with the research subjects, students in a high school from a state school in the state of São Paulo, two activities were implemented, the construction of the Sierpinski triangle fractal using ruler and compass and building of cards fractals, to work geometric concepts in context and diversified. It was found through a questionnaire diagnosis a low income compared to the concepts of Euclidean geometry, after the proposed activities was possible to find a significant improvement in the indices obtained. So with regard to the results, it can be find that the fractal geometry can provide satisfactory results when applied to mathematics education, as it can be used not only as a stimulus for the student to interest for this school subject, but also as part facilitator of learning.
156

O nexo "geometria fractal - produção da ciência contemporânea" tomado como núcleo do currículo de matemática do ensino básico /

Baier, Tânia. January 2005 (has links)
Orientador: Maria Aparecida Viggiani Bicudo / Banca: Maria Inês Fini / Banca: Silvio Donizetti de Oliveira Gallo / Banca: Suzinei Aparecida Siqueira Marconato / Banca: Ubiratan D'Ambrósio / Nesta tese é desenvolvida a proposta de trabalhar a Matemática no Ensino Básico segundo as concepções da ciência contemporânea. Tomou-se a Física Clássica e a Moderna e as respectivas teorias matemáticas por elas utilizadas, buscando-se explicitar as visões de homem, de mundo, de conhecimento e de ciência por elas assumidas. Privilegiou-se, nesta análise, a contraposição da ciência mecanicista em relação à sistêmica. Na primeira, o destaque sendo dado à separação sujeito/objeto, à representação do espaço físico como sendo apenas o euclidiano, ao cálculo exato, priorizando, portanto, os aspectos quantitativos da Matemática. A metáfora que diz dessa concepção é a da máquina. Na sistêmica, a metáfora que a expressa é a da rede, que diz da impossibilidade de separar o sujeito que conhece do objeto conhecido e da inexistência de uma hierarquia de a prioris. Nesta abordagem, foi destacada a importância dos padrões que emergem pelos processos iterativos, os quais geram, também, objetos fractais. O tratamento matemático estende-se do quantitativo ao qualitativo. Com a emergência do pensamento sistêmico, dá-se conta da ameaça que se anuncia à permanência da vida no planeta. Nesta investigação buscou-se trabalhar o núcleo do que está na ameaça, entendida como decorrente de praticar-se a postura mecanicista à exaustão, mostrando-se uma possibilidade de neutralizá-la por meio da adoção da postura fenomenológica, pela realização de ser-se cuidado. Ele foi tomado como central à atividade educadora articulada com a visão sistêmica da ciência. / This thesis develops a proposition about working with Mathematics in Basic Teaching (Elementary and High School), according to the conceptions of contemporary science. Classical and Modern Physics, as the mathematical theories used by those, were taken, searching to explain the visions of man, of world, of knowledge and science assumed by them. This analysis priviledges the confrontation of mechanicist science in relation to the systemic science. In the first one, the emphasis is given to the separation subject/object, to the representation of physical space as only being the Euclidian one, to the exact calculation, thus priorizing the quantitatives aspects of Mathematics. The metaphor which talks about this conception is the machine. In the systemic science, the metaphor which express it is the web, which talks about the impossibility of separating the knowing subject from the known object and the inexistence of a hierarchy of a priori. This approach has emphasized the importance of patterns emerged by the iterative processes which generate, also, fractal objects. The Mathematical treatment extend from quantitative to qualitative. With the emergency of systemic thought, one take into account the threat announced to the permanence of life on the planet. This research aimed to work over what lays in that threat, understood as a result of practicing the mechanicist attitude to the exhaustion, showing a possibility of neutralize it by the adoption of the phenomenological posture, by the achievement of one-self-being care. It was taken as central to the educational activity, articulated with the science systemic vision. / Doutor
157

Fenomenologias no espaço de parâmetros de osciladores caóticos / Phenomenology in the parameter space of chaotic oscillators

Everton Santos Medeiros 30 May 2014 (has links)
Os principais resultados originais relatados ao longo desse texto provêm de observações em experimentos numéricos, entretanto, na maioria dos casos, os resultados são fundamentados com instrumentos teóricos ou com modelos heurísticos. Inicialmente, introduzimos, nas equações que descrevem osciladores caóticos, uma pequena perturbação periódica a fim de observar no espaço de parâmetros a porção de parâmetros cujo comportamento caótico é extinto. Assim, constatamos que o conjunto de parâmetros correspondentes às orbitas caóticas extintas correspondem à replicas de janelas periódicas complexas previamente existentes no sistema não-perturbado. Posteriormente, utilizando as propriedades de torsão do espaço de estados dos osciladores caóticos, visualizamos transições existentes no interior das janelas periódicas complexas. Quando consideramos sequências dessas janelas sob a ótica da torsão do espaço de estados, observamos a existência de regras que relacionam janelas consecutivas ao longo dessa sequência. Adicionalmente, no espaço de parâmetros de osciladores caóticos e sistemas dinâmicos adicionais, fizemos uma estimativa da dimensão da fronteira entre o conjunto de parâmetros que leva às soluções periódicas e o conjunto que leva aos atratores caóticos. Para os sistemas investigados, os valores obtidos para essa dimensão estão no mesmo intervalo de confiança, indicando que essa dimensão é universal. / The main results reported along this text come from observations in numerical experiments, however, in most cases, results are explained by theoretical instruments or heuristic models. Initially we introduced in the equations that describe chaotic oscillators, a small periodic perturbation to observe, in the parameter space, the portion of parameters whose chaotic behavior is extinguished. Thus, we find that the set of parameters corresponding to the extinct chaotic orbits correspond to replicas of previously complex periodic windows existing in the unperturbed system. Subsequently, using the torsion properties of state spaces of chaotic oscillators, we visualize transitions within the complex periodic windows. When we consider sequences of these windows from the perspective of torsion properties of the state space, we observe the existence of rules that relate consecutive windows along these sequences. Additionally, in the parameter space of chaotic oscillators and additional dynamical systems, we estimate the dimension of the boundary between the set of parameters that leads to periodic solutions and the set that leads to chaotic attractors. For the systems considered here, the values for this dimension are in the same confidence interval, indicating that this dimension is universal.
158

Contribuições à modelagem de teletráfego fractal. / Contribution to the modeling of fractal teletrffic

Alexandre Barbosa de Lima 28 February 2008 (has links)
Estudos empíricos [1],[2] demonstraram que o trafego das redes Internet Protocol (IP) possui propriedades fractais tais como impulsividade, auto-similaridade e dependência de longa duração em diversas escalas de agregação temporal, na faixa de milissegundos a minutos. Essas características tem motivado o desenvolvimento de novos modelos fractais de teletráfego e de novos algoritmos de controle de trafego em redes convergentes. Este trabalho propõe um novo modelo de trafego no espaço de estados baseado numa aproximação finito-dimensional do processo AutoRegressive Fractionally Integrated Moving Average (ARFIMA). A modelagem por meio de processos auto-regressivos (AR) também é investigada. A analise estatística de series simuladas e de series reais de trafego mostra que a aplicação de modelos AR de ordem alta em esquemas de previsão de teletráfego é fortemente prejudicada pelo problema da identificação da ordem do modelo. Também demonstra-se que a modelagem da memória longa pode ser obtida as custas do posicionamento de um ou mais pólos nas proximidades do circulo de raio unitário. Portanto, a implementação do modelo AR ajustado pode ser instável devido a efeitos de quantização dos coeficientes do filtro digital. O modelo de memória longa proposto oferece as seguintes vantagens: a) possibilidade de implementação pratica, pois não requer memória infinita, b) modelagem (explícita) da região das baixas freqüências do espectro e c) viabilização da utilização do filtro de Kalman. O estudo de caso apresentado demonstra que é possível aplicar o modelo de memória longa proposto em trechos estacionários de sinais de teletráfego fractal. Os resultados obtidos mostram que a dinâmica do parâmetro de Hurst de sinais de teletráfego pode ser bastante lenta na pratica. Sendo assim, o novo modelo proposto é adequado para esquemas de previsão de trafego, tais como Controle de Admissão de Conexões (CAC) e alocação dinâmica de banda, dado que o parâmetro de Hurst pode ser estimado em tempo real por meio da aplicação da transformada wavelet discreta (Discrete Wavelet Transform (DWT)). / Empirical studies [1],[2] demonstrated that heterogeneous IP traffic has fractal properties such as impulsiveness, self-similarity, and long-range dependence over several time scales, from miliseconds to minutes. These features have motivated the development of new traffic models and traffic control algorithms. This work presents a new state-space model for teletraffic which is based on a finite-dimensional representation of the ARFIMA random process. The modeling via AutoRegressive (AR) processes is also investigated. The statistical analysis of simulated time series and real traffic traces show that the application of high-order AR models in schemes of teletraffic prediction can be highly impaired by the model identification problem. It is also demonstrated that the modeling of the long memory can be obtained at the cost of positioning one or more poles near the unit circle. Therefore, the implementation of the adjusted AR model can be unstable due to the quantization of the digital filter coefficients. The proposed long memory model has the following advantages: a) possibility of practical implementation, inasmuch it does not require infinite memory, b) explicit modeling of the low frequency region of the power spectrum, and c) forecasts can be performed via the Kalman predictor. The presented case study suggests one can apply the proposed model in periods where stationarity can be safely assumed. The results indicate that the dynamics of the Hurst parameter can be very slow in practice. Hence, the new proposed model is suitable for teletraffic prediction schemes, such as CAC and dynamic bandwidth allocation, given that the Hurst parameter can be estimated on-line via DWT.
159

Propriedades aritméticas e topológicas de uma classe de fractais de rauzy / Arithmetic and topological properties of a subclass of the so-called Rauzy\'s fractals

Tatiana Miguel Rodrigues 09 March 2010 (has links)
Estudamos as propriedades aritméticas, geométricas e topológicas de uma classe dos chamados Fractais de Rauzy. Estudamos partucularmente o azulejamento periódico do plano complexo C induzido por eles, assim como a dimensão de Hausdorff de suas fronteiras. Tal trabalho exige um estudo detalhado da fronteira destes conjuntos, que está associada às propriedades aritméticas da \'alpha\' -representação dos números complexos com respeito a um certo número algébrico \'alfa\' / We study the arithmetic, geometric and topological properties of a class of the so-called Rauzy\'s fractals. In particular we study the periodic tiling of the complex plane C induced by them and the Hausdorff dimension of its boundary. Such work is connected to a detailed study of the boundary of such sets and the arithmetic properties of the \'alpha\' representation of complex numbers with respect to a certain algebraic number \'alpha\'
160

Dimensão fractal, dinâmica espacial e padrões de fragmentação urbana de cidades médias do estado de São Paulo / Fractal dimension, spatial dynamic and urban fragmentation patters of medium-sized cities of São paulo state

Trentin, Gracieli, 1983- 21 August 2018 (has links)
Orientador: Marcos César Ferreira / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Geociências / Made available in DSpace on 2018-08-21T21:25:01Z (GMT). No. of bitstreams: 1 Trentin_Gracieli_D.pdf: 18087308 bytes, checksum: b97434f7ee4bafe4c16e2f365e9e99c9 (MD5) Previous issue date: 2012 / Resumo: A maioria das metodologias convencionais empregadas em estudos urbanos não considera o grau de irregularidade dos perímetros e a complexidade morfológica das cidades, pois tendem a aproximar a forma urbana a geometria euclidiana. Entretanto, o fenômeno urbano pode ser também estudado, em sua forma real, a partir da geometria fractal. Neste caso, o grau de fragmentação e preenchimento urbano pode ser estimado a partir da dimensão fractal, contribuindo para analises da dinâmica espacial e temporal das formas urbanas. O objetivo desta pesquisa foi analisar a dinâmica de expansão urbana de um conjunto de cidades medias, com base na dimensão fractal e, posteriormente, identificar possíveis padrões de crescimento associados à fragmentação urbana. Foram escolhidas 14 cidades com população entre 100.000 e 500.000 habitantes, representando uma amostra do universo de cidades médias do estado de São Paulo. De acordo com a proposta de analise espaço-tempo em escala regional e a disponibilidade de material cartográfico, foram definidas quatro datas de analise da dinâmica espacial da forma urbana destas cidades: 1938, 1985, 1995 e 2005. Inicialmente, a expansão urbana das cidades foi mapeada e relacionada ao processo de urbanização paulista, destacando-se a influencia da rede viária na configuração urbana. Em seguida, a dimensão fractal foi estimada por meio de três métodos: Peri metro (PRE), perimetroarea (PAR) e densidade de ocupação (DOC). A análise dos resultados revelou grande dinâmica espacial e temporal nestas cidades, sobretudo entre 1938 e 1985 - fase de maior intensidade no processo de urbanização. Além disso, a rede viária mostrou ser determinante no direcionamento e definição dos principais eixos de expansão urbana. Estas características se refletiram nos valores de D calculados, os quais caracterizaram as cidades quanto à irregularidade, a complexidade e a fragmentação urbana. A variação temporal da dimensão fractal (D) demonstrou estar relacionado ao índice de forma, o que possibilitou a associação das formas urbanas a formatos alongados ou circulares. Com base nos valores de D para o método DOC - cuja variação foi maior no período - foram delimitados grupos de cidades para cada data de analise e para a dinâmica de todo o período (1938-2005). A partir deste agrupamento, foram definidos padrões de fragmentação urbana: formas fragmentadas; formas fragmentadas por imposições físicas e ambientais; e formas com maior regularidade. A caracterização dos grupos de cidades, com base na população, área, perímetro e fatores físico-geográficos dos sítios urbanos, possibilitaram observar diferenças quanto à fragmentação e preenchimento das formas ao longo do tempo. O comportamento espacial e temporal de cada padrão sugere a continuidade no crescimento urbano, com maior influencia do período recente, o que demonstra a existência de autocorrelação temporal no processo de fragmentação. Por fim, a dimensão fractal, utilizada como categoria de analise espacial, comprovou sua eficiência como método de monitoramento e mapeamento dinâmico de formas irregulares e complexas, como são as formas urbanas / Abstract: Most of the conventional methodologies employed in urban studies do not consider the level of perimeter irregularity and the morphological complexity of cities, because they tend to approximate the urban form to the Euclidean geometry. However, the urban phenomenon can also be studied in its real form, based on the fractal geometry. In this case, the urban grade fill and fragmentation can be estimated by fractal dimension (D), contributing to the analysis of the spatial and temporal dynamics of urban forms. The aim of this work was to analyze the urban sprawl dynamic of a set medium-sized cities, based on fractal dimension to identify possible grow patterns associated to urban fragmentation. We chose 14 cities with population between 100.000 and 500.000 inhabitants, which represents a sample of the total medium-sized cities in Sao Paulo state. According to the proposed space-time analysis at a regional scale and the availability of cartographic material, four dates were defined to analyze the spatial dynamic of urban forms: 1938, 1985, 1995 and 2005. Firstly, the urban sprawl was mapped and related to the Sao Paulo urbanization process, highlighting the influence of the road network on the urban configuration. Afterwards, the fractal dimension was estimated by three methods: perimeter-resolution (PRE), perimeterarea (PAR) and occupation density (DOC). The analysis of the results showed great spatial and temporal dynamic in these cities, mainly between 1938 and 1985 - a phase of greater intensity in the urbanization process. Furthermore, the road network was determinant in the direction and definition of the main axes of urban sprawl. These characteristics were reflected in the estimated D values, which characterized the cities as regards irregularity, complexity and urban fragmentation. The temporal changes in the fractal dimension were related to shape index, which enabled the association of urban forms to elongated or circular formats. Based on the D values for the DOC method - which presented greater variation in the period - groups of cities to each date of analysis and for the dynamic of the entire period (1938-2005) were delimited. From this grouping, the following urban fragmentation patterns were defined: fragmented forms; fragmented forms by environment and physical constraints; and forms with more regularity. The characterization of groups of cities was based on population, area, perimeter and physical-geographical factors of urban sites. This allowed to observe differences concerning the fill and fragmentation of forms a long time. The spatial and temporal behavior of each pattern suggests continuity in the urban growth, with a great influence from the most recent period, which demonstrates the existence of temporal autocorrelation in the fragmentation process. In conclusion, the fractal dimension used as a category for spatial analysis proved its efficiency as a dynamic mapping and monitoring method for complex and irregular forms, those observed in urban environments / Doutorado / Análise Ambiental e Dinâmica Territorial / Doutora em Ciências

Page generated in 0.0435 seconds