Spelling suggestions: "subject:"free probability"" "subject:"free aprobability""
21 |
Moments method for random matrices with applications to wireless communication. / La méthode des moments pour les matrices aléatoires avec application à la communication sans filMasucci, Antonia Maria 29 November 2011 (has links)
Dans cette thèse, on étudie l'application de la méthode des moments pour les télécommunications. On analyse cette méthode et on montre son importance pour l'étude des matrices aléatoires. On utilise le cadre de probabilités libres pour analyser cette méthode. La notion de produit de convolution/déconvolution libre peut être utilisée pour prédire le spectre asymptotique de matrices aléatoires qui sont asymptotiquement libres. On montre que la méthode de moments est un outil puissant même pour calculer les moments/moments asymptotiques de matrices qui n'ont pas la propriété de liberté asymptotique. En particulier, on considère des matrices aléatoires gaussiennes de taille finie et des matrices de Vandermonde al ?eatoires. On développe en série entiére la distribution des valeurs propres de differents modèles, par exemple les distributions de Wishart non-centrale et aussi les distributions de Wishart avec des entrées corrélées de moyenne nulle. Le cadre d'inference pour les matrices des dimensions finies est suffisamment souple pour permettre des combinaisons de matrices aléatoires. Les résultats que nous présentons sont implémentés en code Matlab en générant des sous-ensembles, des permutations et des relations d'équivalence. On applique ce cadre à l'étude des réseaux cognitifs et des réseaux à forte mobilité. On analyse les moments de matrices de Vandermonde aléatoires avec des entrées sur le cercle unitaire. On utilise ces moments et les détecteurs à expansion polynomiale pour décrire des détecteurs à faible complexité du signal transmis par des utilisateurs mobiles à une station de base (ou avec deux stations de base) représentée par des réseaux linéaires uniformes. / In this thesis, we focus on the analysis of the moments method, showing its importance in the application of random matrices to wireless communication. This study is conducted in the free probability framework. The concept of free convolution/deconvolution can be used to predict the spectrum of sums or products of random matrices which are asymptotically free. In this framework, we show that the moments method is very appealing and powerful in order to derive the moments/asymptotic moments for cases when the property of asymptotic freeness does not hold. In particular, we focus on Gaussian random matrices with finite dimensions and structured matrices as Vandermonde matrices. We derive the explicit series expansion of the eigenvalue distribution of various models, as noncentral Wishart distributions, as well as correlated zero mean Wishart distributions. We describe an inference framework so flexible that it is possible to apply it for repeated combinations of random ma- trices. The results that we present are implemented generating subsets, permutations, and equivalence relations. We developped a Matlab routine code in order to perform convolution or deconvolution numerically in terms of a set of input moments. We apply this inference framework to the study of cognitive networks, as well as to the study of wireless networks with high mobility. We analyze the asymptotic moments of random Vandermonde matrices with entries on the unit circle. We use them and polynomial expansion detectors in order to design a low complexity linear MMSE decoder to recover the signal transmitted by mobile users to a base station or two base stations, represented by uniform linear arrays.
|
22 |
Forte et fausse libertés asymptotiques de grandes matrices aléatoires / Strong and false asymptotic freeness of large random matricesMale, Camille 05 December 2011 (has links)
Cette thèse s'inscrit dans la théorie des matrices aléatoires, à l'intersection avec la théorie des probabilités libres et des algèbres d'opérateurs. Elle s'insère dans une démarche générale qui a fait ses preuves ces dernières décennies : importer les techniques et les concepts de la théorie des probabilités non commutatives pour l'étude du spectre de grandes matrices aléatoires. On s'intéresse ici à des généralisations du théorème de liberté asymptotique de Voiculescu. Dans les Chapitres 1 et 2, nous montrons des résultats de liberté asymptotique forte pour des matrices gaussiennes, unitaires aléatoires et déterministes. Dans les Chapitres 3 et 4, nous introduisons la notion de fausse liberté asymptotique pour des matrices déterministes et certaines matrices hermitiennes à entrées sous diagonales indépendantes, interpolant les modèles de matrices de Wigner et de Lévy. / The thesis fits into the random matrix theory, in intersection with free probability and operator algebra. It is part of a general approach which is common since the last decades: using tools and concepts of non commutative probability in order to get general results about the spectrum of large random matrices. Where are interested here in generalization of Voiculescu's asymptotic freeness theorem. In Chapter 1 and 2, we show some results of strong asymptotic freeness for gaussian, random unitary and deterministic matrices. In Chapter 3 and 4, we introduce the notion of asymptotic false freeness for deterministic matrices and certain random matrices, Hermitian with independent sub-diagonal entries, interpolating Wigner and Lévy models.
|
23 |
Grandes d´eviations de matrices aléatoires et équation de Fokker-Planck libre / Large deviations of random matrices and free Fokker-Planck equationGroux, Benjamin 09 December 2016 (has links)
Cette thèse s'inscrit dans le domaine des probabilités et des statistiques, et plus précisément des matrices aléatoires. Dans la première partie, on étudie les grandes déviations de la mesure spectrale de matrices de covariance $XX^*$, où $X$ est une matrice aléatoire rectangulaire à coefficients i.i.d. ayant une queue de probabilité en $exp(-at^{alpha})$, $alpha in ]0,2[$. On établit un principe de grandes déviations analogue à celui de Bordenave et Caputo, de vitesse $n^{1+alpha/2}$ et de fonction de taux explicite faisant intervenir la convolution libre rectangulaire. La démonstration repose sur un résultat de quantification de la liberté asymptotique dans le modèle information-plus-bruit. La seconde partie de cette thèse est consacrée à l'étude du comportement en temps long de la solution de l'équation de Fokker-Planck libre en présence du potentiel quartique $V(x) = frac14 x^4 + frac{c}{2} x^2$ avec $c ge -2$. On montre que quand $t to +infty$, la solution $mu_t$ de cette équation aux dérivées partielles converge en distance de Wasserstein vers la mesure d'équilibre associée au potentiel $V$. Ce résultat fournit un premier exemple de convergence en temps long de la solution de l'équation des milieux granulaires en présence d'un potentiel non convexe et d'une interaction logarithmique. Sa démonstration utilise notamment des techniques de probabilités libres. / This thesis lies within the field of probability and statistics, and more precisely of random matrix theory. In the first part, we study the large deviations of the spectral measure of covariance matrices XX*, where X is a rectangular random matrix with i.i.d. coefficients having a probability tail like $exp(-at^{alpha})$, $alpha in (0,2)$. We establish a large deviation principle similar to Bordenave and Caputo's one, with speed $n^{1+alpha/2}$ and explicit rate function involving rectangular free convolution. The proof relies on a quantification result of asymptotic freeness in the information-plus-noise model. The second part of this thesis is devoted to the study of the long-time behaviour of the solution to free Fokker-Planck equation in the setting of the quartic potential $V(x) = frac14 x^4 + frac{c}{2} x^2$ with $c ge -2$. We prove that when $t to +infty$, the solution $mu_t$ to this partial differential equation converge in Wasserstein distance towards the equilibrium measure associated to the potential $V$. This result provides a first example of long-time convergence for the solution of granular media equation with a non-convex potential and a logarithmic interaction. Its proof involves in particular free probability techniques.
|
Page generated in 0.0533 seconds