• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 78
  • 20
  • 15
  • 7
  • 6
  • 5
  • 2
  • 1
  • Tagged with
  • 151
  • 151
  • 76
  • 44
  • 37
  • 24
  • 23
  • 21
  • 18
  • 16
  • 15
  • 15
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Experimental Study on the Effects of OAM Beams Propagating through Atmospheric Turbulence

Wu, HaoLun 07 August 2023 (has links)
No description available.
72

Contemporary Techniques in the Emerging Free Space Optical Communication Systems

Briantcev, Dmitrii 06 1900 (has links)
The goal of this work is to investigate and advance a research on various topics, vital for the development of the future generations of optical communication technology. In the first part of the work, we present a fast and efficient simulation method of structured light free space optics (FSO) channel effects from propagation through the turbulent atmosphere. Information content encoded on the information-bearing beams relevant to the propagation in the context of the direct detection can be expressed in the form of the decomposition matrix at the receiver. To construct these matrices outside of the experiment, a complete physical simulation of some sort needs to occur. Due to the model assumptions, current beam generation techniques based on the phase-screen approximation method can be very slow and are fundamentally limited in their predictive power. We propose to circumvent that with a data-driven approach for decomposition matrix simulation with a Conditional Generative Adversarial Network (CGAN) synthetic simulator. In the second part, we focus on predicting the beam wander of the beam subject to turbulence at the receiver. We present an Recurrent Neural Network - based simulator, designed to predict the future beam wander position based on the previous measurements. The Recurrent Neural Network (RNN) architecture and training method are described. The proposed approach is demonstrated using under-sampled Gaussian beam experimental data as the worst case and over-sampled simulated data for both Gaussian beams and structured light beams as the best case. In the final part of this work, we discuss the Kramers - Kronig receiver, recently proposed promising pseudo-coherent communication scheme. We detail the operating procedure and developed simulation of this scheme, and provide both experimental and simulation results. In experiment, we present a case of proof-of-concept joint sensing and communication over an optical fiber. In simulation, we present a BER analysis of a KK NN decoder in presence of log-normal turbulence and AWGN.
73

Performance Analysis of Free Space Optical Link with Pointing Errors

‍Jung, Kug-Jin 12 1900 (has links)
Free-space optical communication (FSO) has been proposed as an attractive alternative to radio frequency communication in the sense that it provides wide bandwidth and high capacity without requirement of license. However, the scalability of FSO link is limited by pointing error, atmospheric turbulence, and loss. Especially, when it comes to the FSO link between moving platforms, it is imperative works to analyze the statistical channel model considering accurate pointing errors and atmospheric turbulence at the same time. In this paper, we analyze performance of FSO links over various atmospheric situations with pointing errors. First, we assume strong turbulence and obtain a unified approximation of the composite probability density function (PDF) of channel gain, which embraces generalized pointing error models. This approximation leads to new unified formulas for the bit error rate (BER) and outage capacity of a FSO link, which account for the two possible detection mechanisms of intensity modulation/direct detection (IM/DD) and heterodyne detection. Secondly, we statistically derive the unified composite PDF containing all possible pointing error models based on weak turbulence model. In addition, we analyze BER performance in FSO communication with IM/DD and heterodyne detection technology based on the derived unified composite PDF results. Finally, we investigate the ergodic capacity of unmanned aerial vehicle (UAV)-based FSO links over random foggy channel. More specifically, we derive composite PDF and close approximation for the moments of the composite PDF using the statistical model of a UAV-based 3D pointing error and a random foggy channel. With it, we obtain upper bound and asymptotic approximation of the ergodic capacity for the two possible detection techniques of IM/DD and heterodyne detection at high and low signal-to-noise ratio (SNR) regimes.
74

LIMITATIONS OF HOST PLANT USE IN TWO ANDEAN ALTINOTE (NYMPHALIDAE, HELICONIINEA, ACRAEINI), BUTTERFLIES, FROM A TRITROPHIC PERSPECTIVE.

Pedersen, Karen M. 11 May 2015 (has links)
No description available.
75

Combinatorial and Discrete Problems in Convex Geometry

Alexander, Matthew R. 08 November 2017 (has links)
No description available.
76

Design and Implementation of an Optical Tag Reader

Gummalla, Srikanth 17 April 2009 (has links)
No description available.
77

Photonic Crystal Fibers and Optical True Time Delay Engines for Wideband Arrays

Nahar, Niru Kamrun 08 September 2008 (has links)
No description available.
78

RATE-ADAPTIVE TECHNIQUES FOR FREE-SPACE OPTICAL CHANNELS

Liu, Linyan 10 1900 (has links)
<p>Free-space optical (FSO) communication has witnessed rapid development recently in response to ever-increasing demands for greater bandwidth. FSO links provide fiberspeed with the flexibility of wireless. Commercially available systems offer transmission speeds up to 2.5 Gbps, 5 Gbps and 10 Gbps, and demonstration systems report data rates as high as 160 Gbps. Its advantages also include license free operation, high immunity to interference, and ease of deployment. However, FSO systems are sensitive to adverse weather conditions such as fog, rain and snow.</p> <p>In order to improve the availability of FSO channels degraded by atmospheric turbulence and varying weather conditions, the effects of channel gain variations must be compensated. In this thesis, two rate-adaptive techniques, punctured low-density parity-check (LDPC) codes and Raptor codes, are studied using experimental data measured over a1.87 km terrestrial FSO link.</p> <p>Rate-adaptive performances with punctured LDPC codes and Raptor codes are evaluated in terms of outage probability and throughput. In comparison to uncoded system, rate-adaptive systems with both techniques demonstrate significant improvement of throughput and mitigation of outage probability especially in rainy weather. Due to its flexible rate-adaptation and simple hardware implementation, Raptor coded systems are judged more applicable to be implemented in field-programmable gate array (FPGA) based hardware. A dedicated decoding structure is proposed and tested, showing remarkable improvement in resource efficiency as compared to traditional Gauss-Jordan (GJ) decoding structures.</p> / Master of Applied Science (MASc)
79

Interference Management in Wireless LAN Mesh Networks Using Free-Space Optical Links

Rajakumar, Valavan January 2007 (has links)
<p> Wireless LAN mesh networks (WMNs) are a cost effective way of deploying wireless LAN (WLAN) coverage over extended areas. As WMNs become more populated, scalability issues may arise due to the co-channel interference which is inherent in publicly available RF (radio frequency) channels. This co-channel interference can severely degrade network capacity and link reliability and may eventually make it impossible to operate with the frequency channels for which the network was originally designed. In this thesis, this problem is addressed by selectively installing supplementary free-space optical (FSO) links when RF link performance has deteriorated. The frequency assignment problem is solved using a heuristic technique based on a genetic algorithm. In order to determine the quality of the results, the proposed algorithm is compared with a lower bound solution obtained using an Integer Linear Programming (ILP) formulation.</p> <p> Another advantage of FSO links is that they may reduce node power consumption compared with conventional RF links. This may be an important consideration in cases where power consumption at the nodes is important, such as in solar powered mesh networks. Power consumption estimates of RF and FSO links are obtained and compared for different data rates. This data is then used along with historical solar insolation data to estimate the solar panel and battery sizes required to guarantee a given node outage probability. The results show that no extra provisioning is required for replacing the deployed wireless nodes with new FSO links.</p> / Thesis / Master of Applied Science (MASc)
80

3D Inkjet Printing Method with Free Space Droplet Merging for Low Viscosity and Highly Reactive Materials

Sliwiak, Monika January 2018 (has links)
Silicones are industrially important polymers characterized by a wide spectrum of chemical and physical properties with a number of important applications including automotive components, construction materials, isolating parts in electronic devices, flexible electronics, and medical products. Development of additive manufacturing methods for silicones enable production of complex and custom designed shapes and structures at both the micro- and macro-scale, economically feasible. In general, such materials can be fabricated using stereolithographic, extrusion-based, or inkjet printing techniques, in which silicones are polymerized using either photo- or heat-initiators. Silicones can also be crosslinked based on chemical reactions. Although this approach is supposedly the simplest, it has not been widely applied in additive manufacturing, as suitable technology for mixing and curing reactive inks without clogging nozzles has not be developed yet. To address this issue, a new 3D printer, that enables the fabrication of highly reactive and low viscous materials, has been developed and tested experimentally. The proposed fabrication method involves the ejection of two reactive droplets simultaneously from individual dispensers, merging and mixing them in free space outside the nozzle followed by deposition of the merged drop in a patterned format on a substrate. It was shown that the printing process is robust and stable more than 4 hours and it can be used on demand. By incorporating an XYZ positioner, it was possible to deposit droplets in an overlapping fashion to print any programmable shape featuring homogeneous structure, with a small number of pores. Moreover, due to the almost instantaneous reaction between two components (< 10s), the fabrication of very high aspect ratio (AR > 50) objects is possible. Lastly, the presented method can be easily adapted to print in free space without the use of support materials. / Thesis / Master of Applied Science (MASc)

Page generated in 0.0683 seconds