Spelling suggestions: "subject:"bfrequency noise"" "subject:"4frequency noise""
11 |
Electrical Noise in Colossal Magnetoresistors and FerroelectricsLisauskas, Alvydas January 2001 (has links)
No description available.
|
12 |
A design methodology for low phase noise in LC tuned CMOS voltage-controlled oscillatorsLi, Ye-Ming 12 1900 (has links)
No description available.
|
13 |
Investigation into the Vortex Formation Threshold and Infrasound Generation in a Jet Engine Test CellHo, Wei Hua January 2009 (has links)
This thesis details an in investigation of two problems arising during the testing of a jet engine in a test cell, namely the formation and ingestion of vortices and the generation and propagation of infrasound. Investigation involved the use of computational fluid dynamic as well as analytical tools.
The author extended the work of previous researchers by investigating the effect when a suction inlet in surrounded by four walls, (as it is in a test cell). A previously suspected but not documented small region of unsteady vortex was discovered to lie between the steady vortex and no vortex regions. The preferential attachment of the vortex, when formed, to a particular surface was investigated and a low velocity region near that surface has been proven as a possible cause. A cell bypass ratio > 90% was found to be necessary to avoid the formation of vortices in typical situations.
Parametric studies (conducted cetaris paribus) on four different geometries and flow parameters were also conducted to determine how they affected the vortex formation threshold. Boundary layer thickness on the vortex attachment surface, upstream vorticity, size of suction inlet was found to have a direct relationship with probability of vortex formation whereas Reynolds number of flow was found to have an inverse relationship.
Three hypotheses regarding the generation and propagation of infrasound in test cells were analysed. The first hypothesis states that the fluctuating of flow within the test cell led to a periodic fluctuation of pressure. The second hypothesis predicts a change in flow conditions can leads to a change in the acoustic reflection characteristics of the blast basket perforates. The final hypothesis proposes that changing engine location and size of augmenter, can lead to a reduction in the slip velocity between the engine exhaust jet and the cell bypass flow thus reducing the engine jet noise.
The first hypothesis has been disproved using CFD techniques, although the results are as yet inconclusive. The second and third hypotheses have been proven to be potentially feasible techniques to be employed in the future. The changes proposed in the final hypothesis are shown to reduce the engine jet noise by up to 5 dB.
|
14 |
Etude des bruits basse fréquence dans les détecteurs infrarouge quantiques refroidis à base de HgCdTe / Study of low frequency noise in IR cooled detectors made in HgCdTeBrunner, Alexandre 01 June 2015 (has links)
Les exigences liées aux photodétecteurs modernes font de la maîtrise du niveau de bruit un enjeu majeur pour les technologies de demain. Le Random Telegraph Signal (RTS), à l'origine de « pixels clignotants » en imagerie, gênants pour l'utilisateur comme pour les algorithmes de traitement et d'analyse du signal, fait partie des sources de bruit problématiques. Ce travail en fait l'étude dans les détecteurs infrarouge quantiques refroidis à base de HgCdTe. Le premier chapitre présentera des généralités sur la détection infrarouge, le fonctionnement des photodétecteurs quantiques, le matériau HgCdTe, et le bruit. On exposera ensuite les études réalisées sur le bruit RTS dans les imageurs pour différents domaines de l'infrarouge et trois technologies de fabrication de photodiodes. L'évolution des caractéristiques du bruit (amplitude et fréquence) en fonction de la température du détecteur, du flux de photons reçus, de la polarisation appliquée, ou encore du temps d'intégration seront également analysées. Le troisième chapitre sera consacré à l'origine du bruit RTS. Pour cela, différentes architectures d'étages d'entrée de circuit de lecture et de technologies de fabrication de photodiodes seront passées en revue. Enfin, le dernier chapitre exposera l'étude par Deep Level Transient Spectroscopy des défauts profonds électriquement actifs dans la bande interdite du HgCdTe pour le proche infrarouge (Short Wave InfraRed, à 2,5µm). / Infrared detectors are currently facing two major issues: high operating temperature (HOT) and size, weight, and power (SWaP) requirements. To maintain high performance at higher operating temperatures, pixels exhibiting extra noise such as 1/f noise or Random Telegraph Signal (RTS) noise must be limited. This work study the RTS noise in HgCdTe cooled infrared quantum detectors. The first part concerns generalities about the infrared detection, the physic of quantum photodetectors, the HgCdTe material and the noise. Then we present the studies made on RTS noise for different domains of the infrared spectra and for three technologies of photodiodes (Std, AOP and P/N). The evolution of the main features of RTS noise (frequency and amplitude) as a function of the focal plane array temperature, the flux of photons received, the integration time and the applied polarization will be analyzed. The third part is about the origin of the RTS noise. Two architectures of ReadOut Integrated Circuits (ROIC) and two technologies of photodiodes will be examined. Finally, the last part will present the study of electrically active defects in HgCdTe SWIR (2,5µm) made by Deep Level Transient Spectroscopy.
|
15 |
Caractérisation électrique des propriétés d'interface dans les MOSFET nanométriques par des mesures de bruit basse fréquence / Electrical characterization of interface properties in nano-scaled MOSFET devices based on low-frequency fluctuationsKoyama, Masahiro 26 March 2015 (has links)
Dans cette thèse, les propriétés électriques de transistors à nanofils de silicium liées à l'interface oxyde de grille/canal ont été étudiées par le biais de mesures de bruit basse fréquence (bruit 1/f) et de transport dans le canal. Ces transistors nanofils dont les dimensions ont été réduites jusqu'à quelques nanomètres pour la section, représentent une alternative sérieuse pour les futurs nœuds technologiques CMOS. Cependant, la qualité de l'interface oxyde de grille/canal pose question pour transistors dont l'architecture s'étend dans les 3 dimensions, en raison du fort rapport surface/volume inhérent à ces transistors, des différentes orientations cristallographiques de ces interfaces, ou encore des matériaux contraints utilisés pour améliorer les performances électriques. La compréhension des liens entre les propriétés de transport des porteurs dans le canal, qui garantissent en grande partie les performances électriques des transistors, et la qualité de l'interface avec l'oxyde de grille est fond primordiale pour optimiser les transistors nanofils. Les mesures de bruit, associées à l'étude du transport dans le canal, sont un outil puissant et adapté à ces dispositifs tridimensionnels, sans être limité par la taille ultra-réduite des transistors nanofils. Les transistors nanofils étudiés ont été fabriqués à partir de substrats minces SOI, et intègrent un empilement de grille HfSiON/TiN, qui permet de réduire les dimensions tout en conservant les mêmes propriétés électrostatiques. Pour gagner en performances, des contraintes mécaniques ont été introduites dans le canal en silicium : en tension pour les NMOS, par le biais de substrat contraint (sSOI), et en compression pour les PMOS. Un canal en compression uni-axiale peut être obtenu par l'intégration de source/drain en SiGe et/ou par l'utilisation de couches contraintes de type CESL. Des transistors à canal SiGe sur isolant en compression ont également été fabriqués et étudiés. Les caractéristiques électriques des divers transistors nanofils (courbes Id-Vg, compromis Ion-Ioff, mobilité des porteurs) démontrent l'excellent contrôle électrostatique dû à l'architecture 3D, ainsi que l'efficacité de l'ingénierie de contraintes dans les nanofils jusqu'à de faibles longueurs de grilles (~17nm). Des mesures de bruit basse fréquence ont été réalisées sur ces mêmes dispositifs et analysées en fonction des paramètres géométriques de l'architecture nanofils (largeur W, forme de la section, longueur de grille L), et des diverses variantes technologiques. Nous avons démontré que le bruit 1/f dans les transistors nanofils peut être décrit par le modèle de fluctuations du nombre de porteurs (CNF) corrélées aux fluctuations de mobilité (CMF). Le bruit associé aux régions S/D a pu également être intégré dans ce modèle en ajoutant une contribution, en particulier pour les PMOS. Alors que les différentes variantes technologiques ont peu d'effet sur le bruit 1/f, les variations de géométrie en L et W changent la composante de bruit liée aux fluctuations du nombre de porteurs (CNF) de manière inversement proportionnelle à la surface totale (~1/WL). Cette augmentation du bruit est le reflet du transport qui se produit à proximité des interfaces avec l'oxyde. Les différentes orientations des interfaces supérieures et latérales (110) ou (100) présentent la même quantité de pièges d'interface (extrait à partir des mesures de bruit 1/f, en séparant les contributions des différentes faces du nanofil) bien qu'ayant une rugosité différente essentiellement liée au process. En revanche la composante CMF n'est pas altérée par la réduction des dimensions contrairement à la mobilité des porteurs qui décroit fortement avec L. Finalement, les mesures de bruit 1/f ont été comparées aux spécifications ITRS 2013 pour les transistors multi-grilles en vue des futurs nœuds technologiques de la logique CMOS, et démontrent que nos transistors nanofils satisfont les exigences en la matière. / In this thesis, electrical properties of gate oxide/channel interface in ultra-scaled nanowire (NW) MOSFETs were experimentally investigated by carrier transport and low-frequency noise (LFN) characterizations. NW FETs, which have aggressively downscaled cross-section of the body, are strong candidates for near future CMOS node. However, the interface quality could be a critical issue due to the large surface/volume ratio, the multiple surface orientations, and additional strain technology to enhance the performance. Understanding of carrier transport and channel interface quality in NW FETs with advanced high-k/metal gate is thus particularly important. LFN provides deep insights into the interface properties of MOSFET without lower limit of required channel size. LFN measurement thus can be a powerful technique for ultra-scaled NW FETs. Also, fitting mobility (such as low-field mobility) extraction by Y-function method is an efficient method. Omega-gate NW FETs were fabricated from FD-SOI substrates, and with Hf-based high-k/metal gate (HfSiON/TiN), reducing detrimental effects by device downscaling. In addition, strain technologies to the channel were additively processed. Tensile strained-SOI substrate was used for NMOS, whereas compressive stressors were used for PMOS devices. Strained Si channel for PMOS was processed by raised SiGe S/D and CESL formations. Strained SiGe channel (SGOI) was also fabricated for further high-performance PMOS FETs. Firstly, the most common Id-Vg was characterized in single-channel NW FETs as the basic performance. Reference SOI NWs provided the excellent static control down to short channel of 17nm. Stressors dramatically enhanced on-current owing to a modification of channel energy-band structure. Then, extracted low-field mobility in NWs also showed large improvement of the performance by stressors. The mobility extraction effectively evaluated FET performance even for ultra-scaled NWs. Next, LFN investigated for various technological and architectural parameters. Carrier number fluctuations with correlated mobility fluctuations (CNF+CMF) model described 1/f noise in all our FETs down to the shortest NWs. Drain current noise behavior was basically similar in both N- and PMOS FETs regardless of technological splits. Larger 1/f noise stemming from S/D regions in PMOS FETs was perfectly interpreted by the CNF+CMF model completed with Rsd fluctuations. This observation highlighted an advantage of SGOI NW with the lowest level of S/D region noise. Geometrical variations altered the CNF component with simple impact of device scaling (reciprocal to both Wtot and Lg). No large impact of surface orientation difference between the channel (100) top and (110) side-walls in [110]-oriented NWs was observed. Scaling regularity with both Wtot and Lg, without much quantum effect, could be attributed to the use of HfSiON/TiN gate and carrier transport occurring mostly near top and side-wall surfaces even in NW geometry. Meanwhile, the CMF factor was not altered by decreasing dimensions, while the mobility strongly depends on the impact. Extracted oxide trap density was roughly steady with scaling, structure, and technological parameter impacts. Simple separation method of the contributions between channel top surface and side-walls was demonstrated in order to evaluate the difference. It revealed that oxide quality on (100) top and (110) side-walls was roughly comparable in all the [110]-devices. The density values lie in similar order as the recent reports. An excellent quality of the interface with HfSiON/TiN gate was thus sustained for all our technological and geometrical splits. Finally, our NWs fulfilled 1/f LFN requirements stated in the ITRS 2013 for future MG CMOS logic node. Consequently, we concluded that appropriate strain technologies powerfully improve both carrier transport and LFN property for future CMOS circuits consisting of NW FETs, without any large concern about the interface quality.
|
16 |
Autocorrelation analysis in frequency domain as a tool for MOSFET low frequency noise characterization / Analise de autocorrelação no dominio frequencia como ferramenta para a caracterização do ruido de baixa frequencia em MOSFETBoth, Thiago Hanna January 2017 (has links)
O ruído de baixa frequência é um limitador de desempenho em circuitos analógicos, digitais e de radiofrequência, introduzindo ruído de fase em osciladores e reduzindo a estabilidade de células SRAM, por exemplo. Transistores de efeito de campo de metalóxido- semicondutor (MOSFETs) são conhecidos pelos elevados níveis de ruído 1= f e telegráfico, cuja potência pode ser ordens de magnitude maior do que a observada para ruído térmico para frequências de até dezenas de kHz. Além disso, com o avanço da tecnologia, a frequência de corner —isto é, a frequência na qual as contribuições dos ruídos térmico e shot superam a contribuição do ruído 1= f — aumenta, tornando os ruídos 1= f e telegráfico os mecanismos dominantes de ruído na tecnologia CMOS para frequências de até centenas de MHz. Mais ainda, o ruído de baixa frequência em transistores nanométricos pode variar significativamente de dispositivo para dispositivo, o que torna a variabilidade de ruído um aspecto importante para tecnologias MOS modernas. Para assegurar o projeto adequado de circuitos do ponto de vista de ruído, é necessário, portanto, identificar os mecanismos fundamentais responsáveis pelo ruído de baixa frequência em MOSFETs e desenvolver modelos capazes de considerar as dependências do ruído com geometria, polarização e temperatura. Neste trabalho é proposta uma técnica para análise de ruído de baixa frequência baseada na autocorrelação dos espectros de ruído em função de parâmetros como frequência, polarização e temperatura. A metodologia apresentada revela informações importantes sobre os mecanismos responsáveis pelo ruído 1= f que são difíceis de obter de outras formas. As análises de correlação realizadas em três tecnologias CMOS comerciais (140 nm, 65 nm e 45 nm) fornecem evidências contundentes de que o ruído de baixa frequência em transistores MOS tipo-n e tipo-p é composto por um somatório de sinais telegráficos termicamente ativados. / Low-frequency noise (LFN) is a performance limiter for analog, digital and RF circuits, introducing phase noise in oscillators and reducing the stability of SRAM cells, for example. Metal-oxide-semiconductor field-effect-transistors (MOSFETs) are known for their particularly high 1= f and random telegraph noise levels, whose power may be orders of magnitude larger than thermal noise for frequencies up to dozens of kHz. With the technology scaling, the corner frequency — i.e. the frequency at which the contributions of thermal and shot noises to noise power overshadow that of the 1= f noise — is increased, making 1= f and random telegraph signal (RTS) the dominant noise mechanism in CMOS technologies for frequencies up to several MHz. Additionally, the LFN levels from device-to-device can vary several orders of magnitude in deeply-scaled devices, making LFN variability a major concern in advanced MOS technologies. Therefore, to assure proper circuit design in this scenario, it is necessary to identify the fundamental mechanisms responsible for MOSFET LFN, in order to provide accurate LFN models that account not only for the average noise power, but also for its variability and dependences on geometry, bias and temperature. In this work, a new variability-based LFN analysis technique is introduced, employing the autocorrelation of multiple LFN spectra in terms of parameters such as frequency, bias and temperature. This technique reveals information about the mechanisms responsible for the 1= f noise that is difficult to obtain otherwise. The correlation analyses performed on three different commercial mixed-signal CMOS technologies (140-nm, 65-nm and 40-nm) provide strong evidence that the LFN of both n- and p-type MOS transistors is primarily composed of the superposition of thermally activated random telegraph signals (RTS).
|
17 |
Autocorrelation analysis in frequency domain as a tool for MOSFET low frequency noise characterization / Analise de autocorrelação no dominio frequencia como ferramenta para a caracterização do ruido de baixa frequencia em MOSFETBoth, Thiago Hanna January 2017 (has links)
O ruído de baixa frequência é um limitador de desempenho em circuitos analógicos, digitais e de radiofrequência, introduzindo ruído de fase em osciladores e reduzindo a estabilidade de células SRAM, por exemplo. Transistores de efeito de campo de metalóxido- semicondutor (MOSFETs) são conhecidos pelos elevados níveis de ruído 1= f e telegráfico, cuja potência pode ser ordens de magnitude maior do que a observada para ruído térmico para frequências de até dezenas de kHz. Além disso, com o avanço da tecnologia, a frequência de corner —isto é, a frequência na qual as contribuições dos ruídos térmico e shot superam a contribuição do ruído 1= f — aumenta, tornando os ruídos 1= f e telegráfico os mecanismos dominantes de ruído na tecnologia CMOS para frequências de até centenas de MHz. Mais ainda, o ruído de baixa frequência em transistores nanométricos pode variar significativamente de dispositivo para dispositivo, o que torna a variabilidade de ruído um aspecto importante para tecnologias MOS modernas. Para assegurar o projeto adequado de circuitos do ponto de vista de ruído, é necessário, portanto, identificar os mecanismos fundamentais responsáveis pelo ruído de baixa frequência em MOSFETs e desenvolver modelos capazes de considerar as dependências do ruído com geometria, polarização e temperatura. Neste trabalho é proposta uma técnica para análise de ruído de baixa frequência baseada na autocorrelação dos espectros de ruído em função de parâmetros como frequência, polarização e temperatura. A metodologia apresentada revela informações importantes sobre os mecanismos responsáveis pelo ruído 1= f que são difíceis de obter de outras formas. As análises de correlação realizadas em três tecnologias CMOS comerciais (140 nm, 65 nm e 45 nm) fornecem evidências contundentes de que o ruído de baixa frequência em transistores MOS tipo-n e tipo-p é composto por um somatório de sinais telegráficos termicamente ativados. / Low-frequency noise (LFN) is a performance limiter for analog, digital and RF circuits, introducing phase noise in oscillators and reducing the stability of SRAM cells, for example. Metal-oxide-semiconductor field-effect-transistors (MOSFETs) are known for their particularly high 1= f and random telegraph noise levels, whose power may be orders of magnitude larger than thermal noise for frequencies up to dozens of kHz. With the technology scaling, the corner frequency — i.e. the frequency at which the contributions of thermal and shot noises to noise power overshadow that of the 1= f noise — is increased, making 1= f and random telegraph signal (RTS) the dominant noise mechanism in CMOS technologies for frequencies up to several MHz. Additionally, the LFN levels from device-to-device can vary several orders of magnitude in deeply-scaled devices, making LFN variability a major concern in advanced MOS technologies. Therefore, to assure proper circuit design in this scenario, it is necessary to identify the fundamental mechanisms responsible for MOSFET LFN, in order to provide accurate LFN models that account not only for the average noise power, but also for its variability and dependences on geometry, bias and temperature. In this work, a new variability-based LFN analysis technique is introduced, employing the autocorrelation of multiple LFN spectra in terms of parameters such as frequency, bias and temperature. This technique reveals information about the mechanisms responsible for the 1= f noise that is difficult to obtain otherwise. The correlation analyses performed on three different commercial mixed-signal CMOS technologies (140-nm, 65-nm and 40-nm) provide strong evidence that the LFN of both n- and p-type MOS transistors is primarily composed of the superposition of thermally activated random telegraph signals (RTS).
|
18 |
Low Frequency Noise Characterization of AlGaN/GaN High Electron Mobility TransistorsZhang, Ningjiao 06 August 2013 (has links)
No description available.
|
19 |
Low Frequency Noise Characteristics of ZnO Nanowire Field Effect TransistorsXue, Hao January 2016 (has links)
No description available.
|
20 |
A Narrow-Linewidth Laser at 1550 nm Using the Pound-Drever-Hall Stabilization TechniqueLally, Evan M. 03 October 2006 (has links)
Linewidth is a measure of the frequency stability of any kind of oscillator, and it is a defining characteristic of coherent lasers. Narrow linewidth laser technology, particularly in the field of fiber-based infrared lasers, has progressed to the point where highly stable sources are commercially available with linewidths on the order of 1-100 kHz. In order to achieve a higher level of stability, the laser must be augmented by an external frequency stabilization system.
This paper presents the design and operation of a frequency locking system for infrared fiber lasers. Using the Pound-Drever-Hall technique, the system significantly reduces the linewidth of an input laser with an un-stabilized linewidth of 2 kHz. It uses a high-finesse Fabry-Perot cavity, which is mechanically and thermally isolated, as a frequency reference to measure the time-varying frequency of the input laser. An electronic feedback loop works to correct the frequency error and maintain constant optical power. Testing has proven the Pound-Drever-Hall system to be highly stable and capable of operating continuously for several seconds at a time. / Master of Science
|
Page generated in 0.0602 seconds