• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 3
  • 3
  • 3
  • 1
  • Tagged with
  • 26
  • 26
  • 12
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

New techniques for measurement and tracking of phase and frequency.

Hill, Martin T. January 1997 (has links)
This thesis presents and analyses new techniques to measure and track the phase and frequency of high frequency narrow bandwidth signals. In particular, these techniques are all digital in nature or can be implemented in digital integrated circuit technology.Presented first is a frequency measurement technique which involves sampling at regular intervals a binary quantized narrow band signal. The binary quantized samples are digitally processed to obtain the instantaneous frequency of the signal.It is shown that small phase movements in the signal can be detected even though the sampling occurs at a rate much lower than the signal frequency; that there are no frequency offsets in the frequency measurement technique; that the phase error in the technique is small and bounded provided the signal frequency is maintained within derived limits. Other properties of the technique are also derived.The frequency measurement technique is experimentally demonstrated in a number of typical applications.Secondly, a new phase tracking system is presented, which has similarities to conventional phase locked loops. However, unlike phase locked loops, the new system incorporates a local reference source which effectively stabilizes the phase estimate of the signal input being tracked.It is shown that the new system has the following advantages: Precise centre frequency, controllable lock range, and elimination or reduction of the effects of imperfections like voltage controlled oscillator phase noise. General behaviour in noise of the new phase tracking system is derived.An implementation of the new system is presented which employs the frequency measurement technique described above. This implementation is characterized by very precise centre frequency, high phase noise suppression, and can be built almost entirely in digital integrated circuit technology. The new system is ++ / experimentally demonstrated in some typical applications.The techniques presented in this thesis provide improvements of several orders of magnitude in the ability of systems implemented in digital integrated circuit technology to: Measure and control phase and frequency of narrow band signals; Implement high performance phase tracking systems.
2

Low-Cost Quartz Crystal Microbalance System Platform Designed for Chemical Nanoparticle

Wei, Danming 01 July 2016 (has links)
QCM sensor is a response to a kind of broad spectrum, high sensitivity, and simple structure, low-cost detection device, and particularly its quality as a type of gas sensor is widely used. With the successful oscillation in liquid phase, QCM sensor has been involved in the application analytical chemistry, surface chemistry, biochemistry and environmental monitoring side and many other scientific fields. With sensitive surface film as the sensitive element, AT-cut quartz crystal as energy transducer components by changes of the relationship between mass of surface film and frequency of QCM sensor transduces signals of mass or concentration into output frequency signal of sensor, thus achieve changes of mass or concentration detection. This paper mainly states how to design a low-cost QCM system platform with Arduino microcontroller board based on QCM sensor specific properties. For the oscillator circuit selection and differential frequency circuit design, the shield board has properly matched Arduino Mega2560, then by programming code to make Arduino acquire frequency of QCM sensor in real-time. Meanwhile, the interface and data store are corresponding convenient for real- time observing and data post-processing. By the tests of anhydrous ethanol evaporation, QCM system platform was calibrated and Sauerbrey equation verification. Moreover, this paper studies that photocatalytic degradation processing of Rhodamine B (RB) and methyl orange solution at the Surface of nanocrystalline TiO2 by QCM sensor.
3

HIGH SPEED, WIDE BANDWIDTH SIGNAL DETECTION AND FREQUENCY ESTIMATION

Caprio, James R., Nystrom, Lennart 10 1900 (has links)
International Telemetering Conference Proceedings / October 13-16, 1986 / Riviera Hotel, Las Vegas, Nevada / A digital frequency discriminator (DFD) of the delay-correlator type is described. The device is shown to have an instantaneous frequency measurement capability on very short pulses. The theoretical performance of the DFD in a noisy background is derived and shown to compare favorably with measured results.
4

Caractérisation expérimentale du flux thermique transitoire pariétal pour différents modes de combustion / Experimental Characterization of Transient Wall Heat Flux for Different Modes of Combustion

Moussou, Julien 10 July 2019 (has links)
Pour réduire significativement les émissions de CO2 dans les moteurs à combustion interne, un levier majeur est la réduction des pertes thermiques pariétales lors de la combustion. Ces pertes présentent un pic de plusieurs MW/m2 près du point mort haut, et sont liées à des phénomènes complexes d'interaction flamme-paroi qui dépendent du mode de combustion. Afin de mieux appréhender les phénomènes associés, il est nécessaire de caractériser le flux thermique à des échelles temporelles inférieures à la milliseconde.Dans ces travaux, une machine à compression rapide et une cellule à précombustion à volume constant sont utilisées pour simuler les phénomènes de combustion rencontrés en moteurs. Des thermocouples à jonction fines permettent une mesure de flux thermique instantanée avec une résolution temporelle de 0.1 ms. Ces moyens d'essais permettent de reproduire trois modes de combustion : flamme de propagation, flamme de diffusion et auto-inflammation. Ces travaux permettent également d'évaluer les différentes technologies envisageables de mesure de transfert thermique en combustion (thermocouples, thermorésistances et thermométrie phosphore rapide) au regard des caractéristiques métrologiques requises par la rapidité des phénomènes mis en jeu.Le flux lors du transfert thermique atteint des valeurs de plusieurs MW/m2 avec une forme qui dépend du mode de combustion. Le flux lors de la propagation d'une flamme prémélangée est dominé par un pic lors de l'interaction flamme paroi,d'environ 5 MW/m2 et de durée 0.5 ms. Le flux lors de la combustion d'un jet Diesel est approximativement un plateau pendant la durée de l'injection ; il est dominé par l'effet d'entraînement d'air par le jet qui cause une augmentation du coefficient de transfert convectif jusqu'à des valeurs de 10 kW/m2/K, l'augmentation de température liée à la combustion étant secondaire. Dans le cas d'ondes de pression générées par une auto-inflammation rapides de gaz(cliquetis lors d'un allumage commandé ou HCCI à fort contenu énergétique), une corrélation est observée entre l'intensité du cliquetis et le flux thermique associé, quel que soit le mode de combustion qui génère les oscillations de pression. Le flux lors du cliquetis est 3 à 5 fois plus élevé que lors d'une combustion par flamme de propagation comparable. / CO2 emissions in internal combustion engines are linked with inefficiencies due to wall heat losses during combustion.Those losses exhibit a sharp peak of a few MW/m2 close to top dead center and are linked to complex flame/wall interaction phenomena that vary with the combustion mode. A fine understanding of the associated phenomena requires experimental characterization of wall heat flux with a time resolution better than the millisecond. In this PhD work, a rapid compression machine and a precombustion cell are used to reproduce engine combustion phenomena. Thin-junction thermocouples allow an instantaneous measurement of the wall heat flux with a time resolution of 0.1 ms. Three combustion modes are generated: propagation flame, diffusion flame and auto-ignition.Different possible measurement technologies and procedures (thermocouples, thermoresistances and rapid phosphor thermometry) are compared and benchmarked against the features of combustion phenomena. Flux during wall heat transfer reaches values of a few MW/m2 and its shape varies with the combustion mode. During premixed flame propagation, flux is dominated by a peak during flame-wall interaction of about 5 MW/m2 in amplitude and 0.5 ms in duration. During Diesel combustion, heat flux is approximately constant during the injection duration; itsevolution is driven by an increase of the convection coefficient up to 10 kW/m2/K, which is attributed to air entrainment by the spray; the temperature increase from combustion is considered a second-order effect. During combustion presenting a pressure wave propagation (e.g. knock for some spark-ignition cases or HCCI with high energy content), the intensity of pressure oscillations and wall heat flux are shown to be correlated. That correlation is independent of the phenomenon creating the pressure wave; heat flux during knock is 3-5 times higher than for a comparable premixed propagation flame.
5

Photonic Implementation of an Instantaneous Frequency Measurement

Sarkhosh, Niusha, niusha.sarkhosh@rmit.edu.au January 2009 (has links)
With the rapid and ongoing developments in telecommunication and electronic warfare technology, faster and more flexible systems are in demand. Wideband signal processing is thus needed to implement such systems. Microwave photonics has been introduced as a tool for achieving such ultra broadband signal processing. Instantaneous Frequency Measurement (IFM) receivers play an important role in electronic warfare. They have been developed as a means of obtaining a rapid indication of the presence of a threat and to roughly identify the frequency of the threat signals. They also have the advantages of low-cost, compactness and moderate to good sorting capability in an interference-free environment. The main limitation of the traditional RF IFM receivers is constrained bandwidth. Microwave Photonic IFMs have been considered, but the main disadvantages of photonic realization of the recent IFM receiver is cost. This work aims to propose and demonstrate low-cost photonic IFM receivers with a broad frequency measurement range. The proposed methods are based on the use of photonic mixing to down-convert the RF modulated optical signals to DC. In a RADAR warning receiver, usually a bank of IFMs is required. Increasing the numbers of IFMs requires an increase in the number of photo-detectors. Thus if low-frequency, low-cost detectors can be used, then the net system cost will be reduced significantly. The concept is proven and the issues arising are analyzed. In the proof of concept system, measurement of the RF frequency required advance knowledge of the RF power. Secondly, the use of co-axial RF cables as delay elements limited the bandwidth and increased bulk. Using a photonic hybrid approach to achieve orthogonal measurements was demonstrated as a means of dentifying both RF frequency and power simultaneously and independently. Employing all optical mixing removed the need for co-axial RF cables delays using non-linear optical devices such as Semiconductor Optical Amplifier (SOA) and Highly Non-Linear Fiber (HLNF). The last investigation is to improve the sensitivity of the implemented IFM system. The sensitivity of the implemented system is characterized first and a lock-in technique is employed to improve the sensitivity of the system. The final system achieves a sensitivity of -41 dBm which is comparable with the traditional RF IFM receivers.
6

Aplikace počítače v ultralehkém letounu / Applications of Computers in Ultramicro Aircraft

Žůrek, Daniel January 2017 (has links)
The master thesis deals with the possibilities for monitoring the operation of ultralight aircraft or helicopters . The aim is to create a system for the determination of aircraft operating parameters with a main focus on motion detection and evaluation . The thesis describes speed sensing methods , acceleration measurement , frequency measurement methods , wireless communication , serial line communication , hardware and software implementation of the embedded system, and finally description of the implementation of the mobile application .
7

Digital Instantaneous Frequency Measurement Receiver for Fine Frequency and High Sensitivity

Abdulhamed, Bilal Khudhur Abdulhammed 04 June 2019 (has links)
No description available.
8

Hyperfine Structure-Measurement in Alkali-metal Atoms and Ytterbium Atom

Singh, Alok Kumar January 2014 (has links) (PDF)
Atomic precision measurements provide a strong testing ground for new theoretical ideas and fundamental laws of physics. Measurement of the Lamb shift in the hydrogen atom is one of the best examples towards this -it resulted in the birth of QED in 1949 by Dyson, Feynman, Schwinger and Tomonaga. The precision measurements of the hyperfine structure in hydrogen and deuterium by Nafe, Nelson and Rabi indicated that the g-factor for the electron was not exactly 2 as predicted by Dirac, but slightly greater, due to QED effects. Thus the precision measurements are indispensable not only for developing new theory but also for the verification and fine-tuning of theoretical parameters. Precision measurement of hyperfine structure provide valuable information about the nucleus structure, which is helpful in fine tuning of atomic wave-functions used in theoretical calculations. The aim of the work reported in this thesis is the measurement of hyperfine frequency and the observation of hyperfine structure constant in alkali atoms and in Yb atom. This thesis is organized as follows. In Chapter 1, an introduction to the importance of Alkali atoms and Yb atom in the field of precision measurement will be discussed. The scope of this thesis is also discussed in this chapter. In Chapter 2, an introduction to hyperfine structure starting from the beginning of the atomic physics will be discussed. We have discussed about the LS-coupling, jj-coupling, and the influence of the atomic nucleus on atomic spectra. We have also discussed the Zeeman effect and Doppler broadening. In chapter 3, the detail of experimental technique used in this thesis as copropagating satabs, hyperfine frequency measurement using AOM scan, AOM lock and ring cavity has been discussed. Experimental technique to observe the EIT signal in two electron Yb system has been discussed, which can be improved the precision in frequency measurement because of the narrow line-width. In chapter 4, we describe the co-propagating saturated-absorption spectroscopy and its application in frequency measurement. Saturated-absorption spectroscopy (satabs) in a vapor cell is a standard technique used to stabilise the laser frequency. In normal satabs we are getting some extra peaks known as a crossover peaks because laser interact with different velocity group in a vapor cell. In satabs the crossover peaks are stronger and often swamp the true peaks. So we have developed a technique of co-propagating satabs to remove the spurious peak, which has several advantages over conventional satabs. The co-propagating satabs signal appears on a flat background (Doppler-free) with good signal-to-noise ratio and does not have the problem of crossover resonances in between hyperfine transitions. We have adapted this technique to make measurements of hyperfine intervals by using one laser along with an acousto-optic modulator (to produce the scanning pump beam). In chapter 5, we describe the measurement of the hyperfine interval in the 2P1/2 state of 7Li using the SAS technique in hot Li vapor. This technique produces spurious ground crossover resonances that are more prominent that the real peaks. So we have used this ground crossover to measure the hyperfine interval using AOM locking technique. We have developed a technique to measure the absolute frequencies of optical transitions by using an evacuated Rb-stabilized ring-cavity resonator as a transfer cavity. In chapter 6, we study the wavelength-dependent errors due to dispersion at the cavity mirrors by measuring the frequency of the same transition in the Cs D 2 line (at 852 nm) at three cavity lengths. The spread in the values shows that dispersion errors are below 30 kHz, corresponding to a relative precision of 10−10 . We give an explanation for reduced dispersion errors in the ring-cavity geometry by calculating errors due to the lateral shift and the phase shift at the mirrors, and show that they are roughly equal but occur with opposite signs. In chapter 7, we describe precision measurement of hyperfine structure in the 3P2 state of 171,173Yb, and see an unambiguous signature of the magnetic octupole coefficient C in 173Yb. The frequencies of the 3P23S1 transition at 770 nm → are measured using a Rb-stabilized ring-cavity resonator with an accuracy of 200 kHz. In 173Yb we obtain the hyperfine coefficients as A = − 742.11(2) MHz and B = 1339.2(2) MHz, which represent a two orders-of-magnitude improvement in precision, and C = 0.54(2) MHz. Using atomic-structure calculations for two-electron atoms, we extract the nuclear moments quadrupole Q =2.46(12)b and octupole Ω = 34.4(21)b × µN . The observation of nuclear octupole moment in two-electron atoms, to the best of our knowledge, was never reported before. In 171Yb we obtain the hyperfine coefficient A = 2678.49(8) MHz. Using this measurement as well as the previous measurement of A coefficient from our lab, we have compared the hyperfine anomalies for 1P1, 3P1 and 3P2 states. In chapter 8, we describe the EIT in two electron system of 174Yb from 1S0(Fg = 0) 3P1(Fe = 1). We have observed the EIT in degenerate two level system and → after lifting the degeneracy by applying the magnetic field we are getting five peaks. We have also observed the EIT in 173Yb. In 173Yb there are three degenerate two level system Fg =5/2 Fe =3/2, Fg =5/2 Fe =5/2, Fg =5/2 Fe =7/2. →→→ We have observed the same type of EIT signal for all the three transitions Fg = FFe = F, ±F + 1. → In Chapter 9, we give a broad conclusion to the work reported in this thesis and suggest future avenues of research to continue the work started here.
9

A test case for implementing feedback control in a micro hydro power plant

Suliman, Ahmad January 1900 (has links)
Master of Science / Department of Electrical and Computer Engineering / Dwight D. Day / Micro-hydro turbines generate power for small villages and industries in Afghanistan. They usually produce less than 100 kW of power. Currently the flow into the turbine is controlled manually and the voltage is controlled automatically with an electronic load controller. Excess power not used by the village is dumped into a community water heater. For larger sites that have a reservoir and/or large variable load throughout the day and night, the turbine needs to be fitted with an automatic flow control system to conserve water in the reservoir or deal with the variable loads. Large turbines usually use hydraulic governors that automatically adjust the flow of water into the turbine. For micro-hydro sized plants this method would be too expensive and be difficult to build and maintain locally. For this reason, a 3 phase AC induction motor will be used to move the internal flow control valve of the turbine. Because a sudden change in load is possible (30 – 40%) for micro-hydro plants, the electronic load controller will also be needed to respond to quick changes in load so that the village voltage does not exceed 220V. This report documents the process of building a test system comprising of a dynamic resistive load, microcontroller controlled resistive load, a three phase AC generator and a DC Motor. Where the dynamic resistive load represents the load of the village, the computer controlled resistive load would represent the community water heater, the three phase AC generator represents the Generator on site and the DC Motor together with its DC input voltage would emulate the turbine and its water flow respectively. The DC input voltage would be also controlled with a PWM signal through a delay loop to represent the water gate delay effects on the turbine as close as possible. With this, it would be possible to completely build and test a control system that emulates the dynamics of a water turbine generator.
10

Low-Frequency Noise in Si-Based High-Speed Bipolar Transistors

Sandén, Martin January 2001 (has links)
No description available.

Page generated in 0.0722 seconds