• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 1
  • Tagged with
  • 11
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Identifica??o e avalia??o de propriedades de polissacar?deos sulfatados de diferentes fontes naturais que possibilitem sua aplicabilidade biotecnol?gica

Santos, Nednaldo Dantas dos 19 March 2012 (has links)
Made available in DSpace on 2014-12-17T14:13:41Z (GMT). No. of bitstreams: 1 NednaldoDS_TESE.pdf: 2321205 bytes, checksum: c08caa8155a3fd7b840048363939c371 (MD5) Previous issue date: 2012-03-19 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico / Sulfated polysaccharides (SP) are widely distributed in animals and seaweeds tissues. These polymers have been studied in light of their important pharmacological activities, such as anticoagulant, antioxidant, antitumoral, anti-inflammatory, and antiviral properties. On other hand, SP potential to synthesize biomaterials like as nanoparticules has not yet been explored. In addition, to date, SP have only been found in six plants and all inhabit saline environments. However, the SP pharmacological plant activities have not been carrying out. Furthermore, there are no reports of SP in freshwater plants. Thus, do SP from marine plants show pharmacological activity? Do freshwater plants actually synthesize SP? Is it possible to synthesize nanoparticles using SP from seaweed? In order to understand this question, this Thesis was divided into tree chapters. In the first chapter a sulfated polysaccharide (SPSG) was successfully isolated from marine plant Halodule wrightii. The data presented here showed that the SPSG is a 11 kDa sulfated heterogalactan contains glucose and xylose. Several assays suggested that the SPSG possessed remarkable antioxidant properties in different in vitro assays and an outstanding anticoagulant activity 2.5-fold higher than that of heparin Clexane? in the aPTT test; in the next chapter using different tools such as chemical and histological analyses, energy-dispersive X-ray analysis (EDXA), gel electrophoresis and infra-red spectroscopy we confirm the presence of sulfated polysaccharides in freshwater plants for the first time. Moreover, we also demonstrate that SP extracted from E. crassipes root has potential as an anticoagulant compound; and in last chapter a fucan, a sulfated polysaccharide, extracted from the brown seaweed was chemically modified by grafting hexadecylamine to the polymer hydrophilic backbone. The resulting modified material (SNFuc) formed nanosized particles. The degree of substitution for hydrophobic chains of 1H NMR was approximately 93%. SNFfuc-TBa125 in aqueous media had a mean diameter of 123 nm and zeta potential of -38.3 ? 0.74 mV, measured bydynamic light scattering. Tumor-cell (HepG2, 786, H-S5) proliferation was inhibited by 2.0 43.7% at SNFuc concentrations of 0.05 0.5 mg/ mL and RAEC non-tumor cell line proliferation displayed inhibition of 8.0 22.0%. On the other hand, nanogel improved CHO and RAW non-tumor cell line proliferation in the same concentration range. Flow cytometric analysis revealed that this fucan nanogel inhibited 786 cell proliferation through caspase and caspaseindependent mechanisms. In addition, SNFuc blocks 786 cell passages in the S and G2-M phases of the cell cycle / Os polissacar?deos sulfatados (PS) s?o amplamente distribu?dos em animais e tecidos de algas. Estes pol?meros t?m sido estudados em fun??o da import?ncia de suas atividades farmacol?gicas, tais como: anticoagulante, antioxidante, antitumoral, anti-inflamat?ria e as propriedades antivirais. Contudo, o potencial dos PS para sintetizar biomateriais, tais como nanopart?culas, ainda ? pouco explorado. At? ent?o, os PS s? foram encontrados em seis plantas e todas habitam ambientes salino. N?o havendo relatos de PS em plantas de ?gua doce. O que nos levou aos seguintes questionamentos: Os PS extraidos de vegetais marinhos n?o apresentam atividades farmacol?gicas? Os vegetais de ?gua doce realmente sintetizam PS? ? poss?vel sintetizar nanopart?culas utilizando PS a partir de algas marinhas? Para melhor entender as quest?es, esta tese foi dividida em tr?s cap?tulos. No primeiro cap?tulo, um polissacar?deo sulfatado (SPSG) foi isolado a partir de um vegetal marinho Halodule wrightii. Os dados aqui apresentados mostram que o SPSG ? uma heterogalactana sulfatada de 11 kDa constituida de glucose e xilose. Os ensaios realizados sugerem que o SPSG possue propriedades antioxidantes not?veis em diferentes ensaios in vitro e uma excelente actividade anticoagulante de 2,5 vezes mais elevadas do que a de heparina Clexane ? no teste APTT. No cap?tulo seguinte, utilizando ferramentas diferentes, tais como an?lises qu?micas e histol?gicas, an?lise de dispers?o de raios-X (EDXA), eletroforese em gel e espectroscopia de infra-vermelho,confirmamos, em primeira m?o, a presen?a de polissacar?deos sulfatados em vegetais de ?gua doce. Al?m de demonstrarmos que o PS extra?do a partir da raiz de E. crassipes tem potencial como um composto anticoagulante.No ?ltimo cap?tulo uma fucana, um polissac?rido sulfatado, extra?do a partir de uma alga marrom, foi quimicamente modificada por adi??o de hexadecilamina ? cadeia principal do pol?mero hidrof?lico. O material resultante (SNFuc) forneceu part?culas nanom?tricas. O grau de substitui??o para as cadeias hidrof?bicas de 1H RMN foi de aproximadamente 93%. SNFuc em meios aquosos tinha um di?metro m?dio de 123 nm e potencial zeta de -38,3 ? 0,74 mV. Os ensaios com c?lulas tumorais (HepG2, 786, H-S5) demonstrou a ocorr?ncia de uma inibi??o que variou de 2,0-43,7% em concentra??es diferentes de SNFuc (0,05-0,5 mg / mL) resultado semelhante foi obtido com a RAEC monstrando uma inibi??o entre 8,0-22,0%. Por outro lado, o nanogel estimulou a prolifera??o de linhagens celulares n?o tumorais como CHO e RAW nas mesmas concentra??es. An?lise por citometria de fluxo revelou que este nanogel de fucana inibiu a prolifera??o celular de 786 por mecanismos dependentes e independentes de caspases. Al?m disso, bloqueou a passagens da c?lula 786 na fase S e G2-M do ciclo celular / 2020-01-01

Page generated in 0.0326 seconds