Spelling suggestions: "subject:"fuel well,"" "subject:"fuel cell,""
171 |
Improving and Understanding Direct Methanol Fuel Cell (DMFC) PerformanceHacquard, Alexandre 05 May 2005 (has links)
Direct methanol fuel cell (DMFC) is considered as a highly promising power source. It is based on polymer electrolytes membrane (PEM) fuel cell technology. It posses a number of advantages such as a liquid fuel, quick refueling, low cost of methanol and the compact cell, design making it suitable for various potential applications including stationary and portable applications. DMFCs are also environmentally friendly. Although carbon dioxide is produced, there is no production of sulfur or nitrogen oxides. The development of commercial DMFCs has nevertheless been hindered by some important issues. The most important are the low power density caused by the slow electrochemical methanol oxidation at the anode and methanol crossover through PEM, which is responsible for inhibiting the activity of the cathode catalyst as well. With the eventual goal of improving the overall performance of the DMFC, this study has been concerned with an investigation of the issues and effect of various parameters on its performance. First of all, the electrode preparation methodology and the effect of the catalyst were investigated. The most efficient membrane electrode assembly (MEA) was prepared with Pt/Ru black at anode and Pt black cathode on either side of a Nafion 117 membrane. Performance was however limited by current oscillations observed at low cell voltage and high current density attributed to carbon dioxide removal. Consequently, the effect of flow rate was investigated. Higher flow rates eliminated these oscillations. Then attention was focused on the management of the two-phase flow that occurs in the diffusion layer of the electrode as well as in the anode bipolar plate flow channels. Removal of carbon dioxide formed during methanol oxidation was thus found to be an important issue in DMFC. There is a competition between methanol diffusion to the catalyst layer and CO2 removal in the opposite direction. The two fluxes needed to be balanced in order to optimize performance. To accomplish this, the ratio of hydrophilic and hydrophobic pores respectively formed in the catalytic layer by Nafion and PTFE (Teflon) was altered. It also had an effect on crossover. The effect of a barrier layer was investigated to reduce crossover. Finally, zirconia and silica nano-composite membranes were tested instead of Nafion and found to reduce crossover. Developing a good understanding of what happens on the catalyst surface is important to develop a strategy on how improve DMFC performance. Thus is why a dynamic model based on a simplified mechanism for methanol electro-oxidation reaction was developed. It shows, amongst other insights, how the intermediate species coverage evolves with time. The mechanism was however too simple to provide an idea of which poisoning species are formed on the catalyst surface. A more exhaustive mechanism is thus being developed using Reaction Route analysis.
|
172 |
Improving and Understanding Direct Methanol Fuel Cell (DMFC) PerformanceHacquard, Alexandre 12 May 2005 (has links)
Direct methanol fuel cell (DMFC) is considered as a highly promising power source. It is based on polymer electrolytes membrane (PEM) fuel cell technology. It posses a number of advantages such as a liquid fuel, quick refueling, low cost of methanol and the compact cell, design making it suitable for various potential applications including stationary and portable applications. DMFCs are also environmentally friendly. Although carbon dioxide is produced, there is no production of sulfur or nitrogen oxides. The development of commercial DMFCs has nevertheless been hindered by some important issues. The most important are the low power density caused by the slow electrochemical methanol oxidation at the anode and methanol crossover through PEM, which is responsible for inhibiting the activity of the cathode catalyst as well. With the eventual goal of improving the overall performance of the DMFC, this study has been concerned with an investigation of the issues and effect of various parameters on its performance. First of all, the electrode preparation methodology and the effect of the catalyst were investigated. The most efficient membrane electrode assembly (MEA) was prepared with Pt/Ru black at anode and Pt black cathode on either side of a Nafion 117 membrane. Performance was however limited by current oscillations observed at low cell voltage and high current density attributed to carbon dioxide removal. Consequently, the effect of flow rate was investigated. Higher flow rates eliminated these oscillations. Then attention was focused on the management of the two-phase flow that occurs in the diffusion layer of the electrode as well as in the anode bipolar plate flow channels. Removal of carbon dioxide formed during methanol oxidation was thus found to be an important issue in DMFC. There is a competition between methanol diffusion to the catalyst layer and CO2 removal in the opposite direction. The two fluxes needed to be balanced in order to optimize performance. To accomplish this, the ratio of hydrophilic and hydrophobic pores respectively formed in the catalytic layer by Nafion and PTFE (Teflon) was altered. It also had an effect on crossover. The effect of a barrier layer was investigated to reduce crossover. Finally, zirconia and silica nano-composite membranes were tested instead of Nafion and found to reduce crossover. Developing a good understanding of what happens on the catalyst surface is important to develop a strategy on how improve DMFC performance. Thus is why a dynamic model based on a simplified mechanism for methanol electro-oxidation reaction was developed. It shows, amongst other insights, how the intermediate species coverage evolves with time. The mechanism was however too simple to provide an idea of which poisoning species are formed on the catalyst surface. A more exhaustive mechanism is thus being developed using Reaction Route analysis.
|
173 |
Transport-reaction Modeling of the Impedance Response of a Fuel CellCoignet, Philippe 26 May 2004 (has links)
Electrochemical impedance spectroscopy (EIS) is a technique consisting of the application of a small perturbing current or voltage to an electrochemical system and measuring the response of the system. The response of the system can be described through the notion of impedance, Z, which is defined as the transfer function between the voltage and the current signal. By describing the impedance, one can gain insight into the interpretation of EIS experiments for the measurement of fundamental physical properties (eg diffusion coefficients). The impedance responses of electrochemical systems have been described in the past as an arrangement of ideal equivalent-circuit elements. Simple lumped-parameter circuits and more complex finite-transmission-line circuits have been used in the past, but the disadvantage of this approach is the difficulty in interpreting the equivalent-circuit parameters in terms of fundamental properties. It is then interesting to determine impedance by describing mathematically the fundamental physical processes that govern the response of the system. By describing and predicting analytically the impedance response induced by the perturbing current signal, one can: (i) gain considerable insight into the electrochemical process of interest, (ii) make explicit use of the modeling approach to address operational issues such as process design optimization, monitoring, diagnostics and control, and (iii) offer an interpretation to carefully designed EIS experiments for the measurement of fundamental physical properties such as diffusion coefficients or surface of active catalyst.
|
174 |
Iridium-based bimetallic alloy catalysts for the ethanol oxidation reaction for fuel cells modeled by density functional theoryCourtois, Julien 25 April 2013 (has links)
Current ethanol oxidation catalysts in direct ethanol fuel cells (typically platinum-based) suffer from low conversion and are susceptible to CO poisoning. Therefore we determined to find viable alternative catalysts for ethanol oxidation based on iridium using density functional theory to model bimetallic alloy (111) surfaces. Iridium was alloyed with another transition metals M in an overlayer (one layer of metal M on top of bulk iridium) or subsurface configuration (M is inserted under the first layer of iridium). Complete oxidation of ethanol is limited by the breaking of strong C-C bonds, so any catalyst must lower the barriers for C-C bond breaking. We modeled the reaction CH+CO →CHCO.Segregation energies were calculated and the subsurface configuration was the most stable configuration in the vast majority of alloy cases. CO adsorption was also studied and a lower CO adsorption energy was found in many alloy cases compared to pure Pt (, providing encouraging results about the possibility of reducing CO poisoning. Activation energies were lowered for the vast majority of the alloys used in an underlayer structure, reinforcing our interest in the underlayer structures or “subsurfaceâ€� alloys. Finally, we found, based on the CO adsorption energies, activation energies of the C-C breakage reaction, and metal cost, three important catalyst descriptors, a number of promising catalysts for the ethanol oxidation reaction. The most interesting alloys all adopted the underlayer structure Ir/M/Ir. With M = Ta, Hf, Nb, V, Zr, they demonstrated enhanced reactivity and high CO tolerance, having the advantage of reducing the cost of the catalyst, potentially substituting expensive platinum group metals by more affordable components.
|
175 |
Development of an Intermediate Temperature Molten Salt Fuel CellKonde, Spence Martin 21 January 2009 (has links)
In recognition of the shortcomings inherent to the operating temperature ranges of current fuel cell systems, namely the“temperature gap" between 200C and 600C, an effort to develop an intermediate-temperature molten-salt electrolyte fuel cell (IT-MSFC) was undertaken. In this type of fuel cell, the molten salt electrolyte is supported on a porous support, in a planar or other geometry similar to that used in existing fuel cell technologies, such as phosphoric acid fuel cell (PAFC) and molten carbonate fuel cells (MCFC). Such a fuel cell using a molten hydroxide electrolyte and Pt/C catalyst was constructed and tested using hydrogen and oxygen as fuel. The performance was comparable to that which has been obtained from PEM fuel cells at the low end of the voltage range, reaching 950ma/cm2 at 0.4 V in the highest performing test. Performance was superior to PEM fuel cells at the high end of the voltage range, due to the more favorable kinetics at the higher temperatures, with an open circuit voltage (OCV) of 1.0 V with a linear performance curve between 1.0 V and 0.6 V, which is characteristic of fuel cells with low kinetic overpotentials. Longevity of the fuel cell was very poor, however a number of experiments were undertaken to improve it, enabling extension of operating life from 5 minutes to 30 minutes, which is still far too low for practical use. The key problem was identified as electrolyte retention by the support matrix and possible degradation of the gas diffusion layer and catalyst. Experiments were also conducted using methanol vapor as fuel, and it was found to provide performance close to that recorded with pure hydrogen. Experiments were also conducted using several alternative molten salts, including nitrate and chloride eutectics. Combinations of nitrates with hydroxides added to act as a charge carrier produced a working fuel cell, however performance was greatly reduced. Though preliminary, the work described herein demonstrates the great potential of IT-MSFC, and outlines the work needed to make this type of fuel cell practical.
|
176 |
Thermodynamic stability of perovskite and lanthanum nickelate-type cathode materials for solid oxide fuel cellsCetin, Deniz 05 November 2016 (has links)
The need for cleaner and more efficient alternative energy sources is becoming urgent as concerns mount about climate change wrought by greenhouse gas emissions. Solid oxide fuel cells (SOFCs) are one of the most efficient options if the goal is to reduce emissions while still operating on fossil energy resources. One of the foremost problems in SOFCs that causes efficiency loss is the polarization resistance associated with the oxygen reduction reaction(ORR) at the cathodes. Hence, improving the cathode design will greatly enhance the overall performance of SOFCs.
Lanthanum nickelate, La2NiO4+δ (LNO), is a mixed ionic and electronic conductor that has competitive surface oxygen exchange and transport properties and excellent electrical conductivity compared to perovskite-type oxides. This makes it an excellent candidate for solid oxide fuel cell (SOFC) applications. It has been previously shown that composites of LNO with Sm0.2Ce0.8O2-δ (SDC20) as cathode materials lead to higher performance than standalone LNO. However, in contact with lanthanide-doped ceria, LNO decomposes resulting in free NiO and ceria with higher lanthanide dopant concentration.
In this study, the aforementioned instability of LNO has been addressed by compositional tailoring of LNO: lanthanide doped ceria (LnxCe1-xO2,LnDC)composite. By increasing the lanthanide dopant concentration in the ceria phase close to its solubility limit, the LNO phase has been stabilized in the LNO:LnDC composites. Electrical conductivity of the composites as a function of LNO volume fraction and temperature has been measured, and analyzed using a resistive network model which allows the identification of a percolation threshold for the LNO phase. The thermomechanical compatibility of these composites has been investigated with SOFC systems through measurement of the coefficients of thermal expansion. LNO:LDC40 composites containing LNO lower than 50 vol%and higher than 40 vol% were identified as being suitable to incorporate into full button cell configuration from the standpoint of thermomechanical stability and adequate electrical conductivity. Proof-of-concept performance comparison for SOFC button cells manufactured using LNO: La0.4Ce0.6O2-δ composite to the conventional composite cathode materials has also been provided. This thermodynamics-based phase stabilization strategy can be applied to a wider range of materials in the same crystallographic family, thus providing the SOFC community with alternate material options for high performance devices.
|
177 |
One-atom-thick crystals as a novel class of proton conducting materialsLozada Hidalgo, Marcelo January 2015 (has links)
Graphene, a one-atom-thick sheet of carbon atoms, is impermeable to all atoms and molecules; the same can be expected for other 2D crystals like hexagonal boron nitride (hBN). In this work we show that monolayers of graphene and hBN are highly permeable to thermal protons. As a reference, we show that monolayers of molybdenum disulphide as well as bilayers of graphene and tetralayers of hBN are not. Moreover, we show that water plays a crucial role in the transport mechanism. Because of the zero point energy of vibration in the oxygen-hydrogen bonds in water, protons face energy barriers smaller than previously predicted by theory. The effect, revealed by substituting hydrogen for deuterium, also shows that protons and deuterons transport at different rates across the membranes; establishing them as membranes with subatomic selectivity. Beyond the purely scientific implications, our results establish monolayers of graphene and hBN as a promising new class of proton conducting materials with potential applications in fuel cells, hydrogen purification and isotope enrichment technologies.
|
178 |
Estudo de rotas de síntese e processamento cerâmico do compósito NiO-YSZ para aplicação como anodo em células a combustível do tipo óxido sólido / Study of synthesis routes and processing of NiO-YSZ ceramic composite for use as anode in solid oxide fuel cell (SOFC)Yoshito, Walter Kenji 17 March 2011 (has links)
Este estudo visa a definição de condições de síntese e processamento cerâmico que possibilitem a obtenção do componente anódico com características adequadas para a operação de uma SOFC (Solid Oxide Fuel Cell), ou seja, boa distribuição microestrutural do NiO na matriz de YSZ e porosidade cerca de 30% após redução de NiO. As rotas de síntese selecionadas englobaram a coprecipitação em meio amoniacal, mistura mecânica dos pós e combustão a partir de sais de nitrato. As técnicas de caracterização de pós empregadas incluíram a difração de raios X, microscopia eletrônica de varredura, microscopia eletrônica de transmissão, difração a laser, adsorção gasosa (BET) e picnometria de hélio. Os resultados obtidos indicaram que empregando-se a técnica de coprecipitação, a perda de Ni2+, na forma de complexo [Ni(NH3)n]2+, pode ser minimizada pelo controle do pH em 9,3, mantendo-se a concentração de Ni2+ na solução inicial em 0,1M. No método de mistura mecânica a melhor condição de dispersão dos pós, sem a sedimentação diferencial, foi obtida para valores de potencial zeta em pH 8,0, fixando-se a concentração de dispersante em 0,8% em massa. Na síntese por combustão observou-se que para composições pobres em combustível, os produtos finais apresentaram-se amorfos e com alta área superficial (120,2 m2.g-1). Para as composições ricas em combustível, uréia, os pós obtidos apresentaram-se cristalinos sendo que a intensidade das reflexões do padrão de DRX aumenta com o aumento do excesso de combustível, devido ao aumento da temperatura de reação. No estudo de sinterabilidade dos compactados preparados a partir de pós preparados pelos três métodos determinou-se a temperatura ao redor de 1300 ºC para máxima taxa de densificação e porosidade entre 6,0 e 14%. Os resultados da redução em atmosfera de H2 dos compósitos confirmam que a cinética de reação ocorre em duas etapas, sendo que a primeira etapa com comportamento linear é controlada por reação química na superfície. Na segunda etapa a redução passa a ser controlada pela difusão do gás nos micros poros, gerados pela redução do NiO, diminuindo a taxa de redução. / This study aim the definition of synthesis and ceramic processing conditions of the anodic component suitable for operation of SOFC, i.e, homogeneous distribution of NiO in YSZ matrix and porosity after reduction above 30%. The selected synthesis routes included the co-precipitation in ammonia media, mechanical mixing of powders and combustion reaction from nitrate salts. The characterization techniques of powders included the X-ray diffraction, scanning and transmission electron microscopy, laser diffraction, nitrogen gas adsorption technique (BET) and Helium pycnometry. The obtained results indicated that the loss of Ni2+ in co-precipitation process, due to the formation of complex [Ni(NH3)n]2+, can be minimized by controlling the pH around 9.3, keeping the concentration of nickel cation in the solution to be precipitated around 0.1M. In the mechanical mixing method the best condition of powder dispersion, without differential sedimentation, was obtained for zeta potential values at pH around 8.0, fixing the dispersant concentration at 0.8%. For the combustion synthesis it was observed that when stoichiometric and twofold stoichiometric urea was used, amorphous phase was formed and a higher surface area was attained in the final products. Employing the fuel-rich solution condition, crystallization of the powder was observed and the relative intensity of reflections of XRD patterns increased with excess of fuel, due to increasing the reaction temperature. Sinterability studies of pellets prepared from powder synthesized by the three routes described above showed the temperature around 1300 º C for maximum rate densification and porosity between 6.0 and 14%. Reduction results of the composites confirmed that the reduction kinetics occurs in two steps. The first one with a linear behavior and controlled by chemical reaction on the surface. The second reduction step is the reduction that is controlled by gas diffusion in micro pores, generated by reduction of nickel oxide, decreasing the rate of reduction.
|
179 |
Aplicação de catalisadores PtSn/C e membranas Nafion-SiO2 em células a combustível de etanol direto em elevadas temperaturas / Application of PtSn/C catalysts and Nafion-SiO2 membranes in direct ethanol fuel cell at high temperaturesMauro André Dresch 10 June 2014 (has links)
Este trabalho teve como objetivo a combinação de ânodos e eletrólitos otimizados, para a formação de células a combustível de etanol direto (DEFC), operantes em elevadas temperaturas (130 ºC). Como materiais de ânodo, foram produzidos eletrocatalisadores baseados em PtSn/C, com diversas razões atômicas Pt:Sn, preparados pelo método do poliol modificado, essa metodologia possibilita a produção de eletrocatalisadores auto-organizados com estreita distribuição de tamanhos de partículas e elevado grau de liga. Os eletrocatalisadores foram caracterizados por DRX e stripping de CO. Os resultados mostraram que esses materiais apresentaram elevado grau de liga e Eonset de oxidação de CO em potenciais menores do que os materiais comerciais. Como eletrólito, foram sintetizados híbridos Nafion-SiO2 com a incorporação do óxido diretamente nos agregados iônicos de diversos tipos de membranas Nafion. Os parâmetros de síntese, tais como o solvente em meio solgel, a espessura da membrana, e a concentração do precursor de sílica foram avaliados em termos do percentual de sílica incorporada e da estabilidade mecânica do híbrido. Por fim, ânodos e eletrólitos otimizados foram avaliados em DEFCs nas temperaturas de 80 e 130 ºC. Os resultados mostraram um significativo incremento no desempenho de polarização (122 mW cm-2), resultado da aceleração na taxa de oxidação de etanol devido ao material de ânodo otimizado e do aumento de temperatura de operação, uma vez que o uso de eletrólitos híbridos possibilita o aumento da temperatura sem perdas de condutividade. Nesse sentido, a combinação de eletrodos e eletrólitos otimizados é uma alternativa promissora para o desenvolvimento de tais dispositivos. / This work has as objective to evaluate anodes and electrolytes in direct ethanol fuel cells (DEFC) operating at high temperature (130 ºC). As anode materials, electrocatalysts based on PtSn/C were prepared by Modified Polyol Method with various Pt:Sn atomic ratios. Such methodology promotes selforganized electrocatalysts production with narrow particle size distribution and high alloying degree. The eletrocatalysts were characterized by XRD, and CO stripping. The results showed that these materials presented high alloying degree and Eonset CO oxidation at lower potential as commercial materials. As electrolyte, Nafion-SiO2 hybrids were synthesized by sol-gel reaction, by the incorporation of oxide directly into the ionic aggregates of various kinds of Nafion membranes. The synthesis parameter, such sol-gel solvent, membrane thickness and silicon precursor concentration were studied in terms of silica incorporation degree and hybrid mechanical stability. Finally, the optimized anodes and electrolytes were evaluated in DEFC operating at 80 130 ºC temperature range. The results showed a significant improvement of the DEFC performance (122 mW cm-2), resulted from the acceleration of ethanol oxidation reaction rate due to anode material optimization and high temperature operation once the use of hybrids possibilities the increase of temperature without a significant conductivity loses. In this sense, the combination of optimized electrodes and electrolytes are a promising alternative for the development of these devices.
|
180 |
Comparison of Arcobacter butzleri ED-1 and Arcobacter L anode biofilm formation and a proteomic comparison of A. butzleri ED-1 at the anode of a half microbial fuel cellKnighton, Matthew Charles January 2013 (has links)
Microbial fuel cells (MFCs) are electrochemical devices that exploit the ability of certain microorganisms to anaerobically respire using an insoluble terminal electron acceptor and therefore generate an electrical current. These bacteria are called electrogens or electrogenic bacteria. Two species of Arcobacter, Arcobacter butzleri ED-1 and Arcobacter L were isolated from the anodic chamber of an acetate fed MFC, and A. butzleri ED-1 was found to be the more electrogenic of the two bacteria. Arcobacter spp. are proteobacteria and A. butzleri ED-1 and Arcobacter L were the first example of electrogenically active e proteobacteria. It was decided to study their interactions with the anode by fluorescent microscopy and study their electrogenic mechanisms by comparative proteomics using the iTRAQ method as it would allow for simultaneous identification and quantification of peptides in multiple samples. Fluorescent imaging over a period of 120 h in a half MFC showed that both A. butzleri ED-1 and Arcobacter L formed a thin anodic biofilm of a few cells thick and that A. butzleri ED-1 maintained a more stable anodic biofilm than Arcobacter L. iTRAQ analysis showed that the flagellin FlaA was up-regulated 2.4 fold at the anode but no other electron transport proteins or adhesins were upregulated. These results were distinct from those observed for other electrogenic bacteria (Geobacter sulfurreducens and Shewanella oneidensis MR-1) in previous studies which exhibited up-regulated electron transport proteins at the anode as well as forming an anodic biofilm of 50 μm thick. Therefore based on these results it was concluded that FlaA was most likely playing an important role A. butzleri ED-1 anode biofilm formation and that the mechanisms of electrogenesis in A. butzleri ED- 1 and Arcobacter L may be novel compared to those previously characterised. It was also concluded that one possible reason for A. butzleri ED-1 being more electrogenic than Arcobacter L was its ability to form a more stable anodic biofilm. It must be noted that both of these conclusions are highly speculative and further study is needed to elucidate the electrogenic mechanisms of A. butzleri ED-1 and to further compare biofilm formation between the two species.
|
Page generated in 0.0958 seconds