• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

SPECTRUM MANAGEMENT FOR FUTURE GENERATIONS OF CELLULAR NETWORKS

Randrianantenaina, Itsikiantsoa 08 1900 (has links)
The demand for wireless communication is ceaselessly increasing in terms of the number of subscribers and services. Future generations of cellular networks are expected to allow not only humans but also machines to be immersively connected. However, the radio frequency spectrum is already fully allocated. Therefore, developing techniques to increase spectrum efficiency has become necessary. This dissertation analyzes two spectrum sharing techniques that enable efficient utilization of the available radio resources in cellular networks. The first technique, called full-duplex (FD) communication, uses the same spectrum to transmit and receive simultaneously. Using stochastic geometry tools, we derive a closed-form expression of an upper-bound for the maximum achievable uplink ergodic rate in FD cellular networks. We show that the uplink transmission is vulnerable to the new interference introduced by FD communications (interference from the downlink transmission in other cells), especially when the disparity in transmission power between the uplink and downlink is considerable. We further show that adjusting the uplink transmission power according to the interference power level and the channel gain can improve the uplink performance in full-duplex cellular networks. Moreover, we propose an interference management technique that allows a flexible overlap between the spectra occupied by the downlink and uplink transmissions. The flexible overlap is optimized along with the user-to-base station association, the power allocation and the channel allocation in order to maximize a network-wide utility function. The second spectrum sharing technique, called non-orthogonal multiple access (NOMA), allows a transmitter to communicate with multiple receivers through the same frequency-time resource unit. We analyze the implementation of such a scheme in the downlink of cellular networks, more precisely, in the downlink of fog radio access networks (FogRANs). FogRAN is a network architecture that takes full advantage of the edge devices capability to process and store data. We propose managing the interference for NOMA-based FogRAN to improve the network performance by jointly optimizing user scheduling, the power allocated to each resource block and the division of power between the multiplexed users. The simulation results show that significant performance gains can be achieved through proper resource allocation with both studied spectrum sharing techniques.
2

Modeling, analysis, and optimization of multi-tier cellular networks

Sakr, Ahmed 02 February 2017 (has links)
Multi-tier cellular networks have led to a paradigm shift in the deployment of base stations (BSs) where macrocell BSs are overlaid with smaller and lower power BSs such as microcells, picocells, and femtocells. Stochastic geometry has been proven to be an effective tool to capture such heterogeneity and uncertainties in deployment of cellular BSs. In stochastic geometry, random spatial models are used to model multi-tier cellular networks where the locations of BSs is each tier is assumed to be drawn from a point process with the appropriate spatial density. This thesis proposes stochastic geometry-based approaches to analyze, model, and optimize multi-tier cellular networks under several setups and technologies. First, I propose a novel location-aware cross-tier cooperation scheme that aim at improving the performance of users with low signal-to-interference-plus-noise ratio (SINR). Second, I study the performance of cognitive device-to-device (D2D) communication in multi-channel downlink-uplink cellular network with energy harvesting. For the coexistence between cellular and D2D transmissions, I propose a spectrum access policy for cellular BSs to avoid using D2D channels when possible. Third, I investigate the feasibility of energy harvesting from ambient RF interference in multi-tier uplink cellular networks. For this setup, I capture randomness in the network topology and the battery dynamics. Fourth, I extend multi-tier uplink cellular networks to consider the case when users do not necessarily associate with the nearest BS (i.e., flexible cell association). Finally, I compare between different cell association criteria including coupled and decoupled cell association for uplink and downlink transmissions in multi-tier full-duplex cellular networks. For all network setups, I use stochastic geometry to derive simple and closed-form expressions to evaluate the performance in terms of several metrics, e.g., outage probability, mean rate, transmission probability, success probability, and load per BS. I also highlight main tradeoffs in different networks and provide guidelines to optimize different performance metrics by carefully tuning fundamental network design parameters. / February 2017
3

IMPACT OF NOISES AND NONLINEARITY ON ANALOG SELF-INTERFERENCE CANCELLATION IN IN-BAND FULL-DUPLEX COMMUNICATIONS

Jonathan M Shilling (11813957) 18 December 2021 (has links)
<p>A wireless revolution has occurred resulting in the formation of a proverbial backbone of wireless devices that our everyday functionality, productivity, and general way of life have become dependent. Consequently, victimizing an already constrained and finite wireless spectrum with further demands for increased bandwidths, greater channel capacities, and an insatiable plea for faster access rates. In-band full-duplexing (IBFD) is an innovative and encouraging technology that aims to answer this tacit mitigation call by bolstering spectral efficiency through simultaneous same frequency band transmission and reception. Conventionally, transceiver-based systems have their respective transmission and reception dictated by occurring in either disparate time slots (half-duplex) or distinct frequencies (out-of-band full-duplex). By achieving simultaneous same band communication, a theoretical doubling in spectral efficiency is rendered feasible. However, transmitter to receiver leakage, or self-interference (SI), remains the most barring frustration to IBFD realization. Being locally generated, SI is considerably stronger (often 50-100dB) than the desired signal-of-interest (SOI). Left unresolved, this unwanted energy saturates the receiver’s amplifiers and desensitizes its analog-to-digital converters. Thus, rendering the SOI unintelligible. Therefore, a means of self-interference cancellation (SIC) is necessitated to suppress any polluting SI to levels that of or below the receiver’s noise floor.</p><p></p>In this thesis an in-depth history of in-band full duplex technology is first presented, followed by a condensed examination of the SIC domains. Pertinent theory is presented pertaining to noise analysis and estimation relevant to a proposed IBFD transceiver architecture. Finally, a modelled simulation of this transceiver, developed in MATLAB, is presented. Subsequent results detailing an investigative study done on a fully adaptive tapped-branch analog self-interference canceller are shown. Said canceller’s variable phase and amplitude weights are set via real-time training using gradient descent algorithms. Evaluation of the results reveal marginal effect on the SIC efficacy due to transmission path nonlinearity and noise distortions alone. However, expansion of model consideration for conceivable cancellation hardware nonlinearities reveals an indirectly proportional degradation of SIC performance by up to 35dB as distortion levels vary from -80 dBm to -10 dBm. These results indicate consideration of such non-idealities should be an integral part of cancellation hardware design for the preclusion of any intrinsic cancellation impediments.

Page generated in 0.1356 seconds