• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Um metodo de região de confiança para minimização irrestrita sem derivadas / On the region method for unconstrained minimization without derivatives

Jimenez Urrea, Liliana 12 August 2018 (has links)
Orientador: Vera Lucia da Rocha Lopes / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-12T04:23:12Z (GMT). No. of bitstreams: 1 JimenezUrrea_Liliana_M.pdf: 3576733 bytes, checksum: 0e211564f3f081c060195cfa21aa4135 (MD5) Previous issue date: 2008 / Resumo: Neste trabalho apresentamos métodos de minimização irrestrita, de uma função objetivo F de várias variáveis, que não fazem uso nem do gradiente da função objetivo - métodos derivative-free, nem de aproximações do mesmo. Nosso objetivo básico foi estudar e comparar o desempenho de métodos desse tipo propostos por M. J. D. Powell, que consistem em aproximar a função F por funções quadráticas - modelos quadráticos - e minimizar tal aproximação em regiões de confiança. Além do algoritmo de Powell de 2002 - UOBYQA - são testados: uma variante dele, na qual utilizamos a escolha de alguns parâmetros, por nós estabelecida, e também a nova versão de NEWUOA, proposta por Powell em 2006. Todos os testes foram realizados com problemas da coleção de Hock-Schittkowski. São comparados os resultados numéricos obtidos pelos métodos de Powell: entre eles mesmos e também entre eles e um método de busca padrão de autoria de Virginia Torczon, o qual define, em cada iteração, um conjunto padrão de direções de busca a partir do ponto atual, procurando melhores valores para F. / Abstract: In this work we study numerical methods to solve problems of nonlinear programming without constraints, which do not make use, neither of the gradient of the objective function, nor of approaches to it. A method that consists on the approximation of the function F by a quadractic model, due to Powell (2002), UOBYQA, and a variant of this method were implemented. A new version of the NEWUOA, introduced by Powell in 2006, was also implemented. Besides the Powell algorithm, commentaries of the implementations are done. Numerical tests of such implementations with problems of the Hock-Schittkowski collection, are made at the end of the work. There are also comparisons of the Powell methods among themselves, and also a comparison among the Powell methods with a pattern search method, which looks for the improvement of the value of the objective function throughout a set of directions, depending on the current point. Such a method is due to Virginia Torczon. / Mestrado / Otimização / Mestre em Matemática Aplicada
2

Duality investigations for multi-composed optimization problems with applications in location theory

Wilfer, Oleg 29 March 2017 (has links)
The goal of this thesis is two-fold. On the one hand, it pursues to provide a contribution to the conjugate duality by proposing a new duality concept, which can be understood as an umbrella for different meaningful perturbation methods. On the other hand, this thesis aims to investigate minimax location problems by means of the duality concept introduced in the first part of this work, followed by a numerical approach using epigraphical splitting methods. After summarizing some elements of the convex analysis as well as introducing important results needed later, we consider an optimization problem with geometric and cone constraints, whose objective function is a composition of n+1 functions. For this problem we propose a conjugate dual problem, where the functions involved in the objective function of the primal problem are decomposed. Furthermore, we formulate generalized interior point regularity conditions for strong duality and give necessary and sufficient optimality conditions. As applications of this approach we determine the formulae of the conjugate as well as the biconjugate of the objective function of the primal problem and analyze an optimization problem having as objective function the sum of reciprocals of concave functions. In the second part of this thesis we discuss in the sense of the introduced duality concept three classes of minimax location problems. The first one consists of nonlinear and linear single minimax location problems with geometric constraints, where the maximum of nonlinear or linear functions composed with gauges between pairs of a new and existing points will be minimized. The version of the nonlinear location problem is additionally considered with set-up costs. The second class of minimax location problems deals with multifacility location problems as suggested by Drezner (1991), where for each given point the sum of weighted distances to all facilities plus set-up costs is determined and the maximal value of these sums is to be minimized. As the last and third class the classical multifacility location problem with geometrical constraints is considered in a generalized form where the maximum of gauges between pairs of new facilities and the maximum of gauges between pairs of new and existing facilities will be minimized. To each of these location problems associated dual problems will be formulated as well as corresponding duality statements and necessary and sufficient optimality conditions. To illustrate the results of the duality approach and to give a more detailed characterization of the relations between the location problems and their corresponding duals, we consider examples in the Euclidean space. This thesis ends with a numerical approach for solving minimax location problems by epigraphical splitting methods. In this framework, we give formulae for the projections onto the epigraphs of several sums of powers of weighted norms as well as formulae for the projection onto the epigraphs of gauges. Numerical experiments document the usefulness of our approach for the discussed location problems.

Page generated in 0.1069 seconds