Spelling suggestions: "subject:"métododos dde região dde confiança"" "subject:"métododos dde região dee confiança""
1 |
Fluxo de Potência Ótimo globalmente convergente utilizando métodos de pontos interiores com estratégias de região de confiançaSousa, Andréa Araújo 09 1900 (has links)
O problema de Fluxo de Potência Ótimo (FPO) vem sendo estudado desde a década de 1960 e vários métodos de resolução são encontrados na literatura. Em particular, os métodos de Pontos-Interiores (PI) vêm tendo um grande destaque devido a sua robustez e eficiência, alcançando convergência com reduzido número de iteraçoes mesmo em problemas com um grande número de variáveis. Apesar do seu bom desempenho computacional no que se refere a número de iterações e tempo de processamento, os métodos de PI não possuem convergência global, que consiste em encontrar uma solução independente da escolha do ponto inicial. Um dos objetivos desta pesquisa é o desenvolvimento de um algoritmo de FPO globalmente convergente, ou seja, capaz de encontrar uma solução sempre que uma existir. Para atingir esse objetivo, o algoritmo proposto associa métodos de Região de Confiança com os eficientes métodos de PI. Algoritmos globalmente convergentes são invariavelmente computacionalmente intensivos, de forma que três abordagens distintas para a resolução dos subproblemas de região de confiança foram estudadas. Quanto à formulação do problema de FPO, foram desenvolvidos modelos que consideram dispositivos FACTS, como o UPFC (Unified Power Flow Controller), e restrições de estabilidade de tensão. Algumas opções de função objetivo, como minimização de perdas, minimização de corte de carga e maximização de carregamento, foram testadas e o desempenho do algoritmo proposto foi avaliado comparando-o ao desempenho de algoritmos de PI já conhecidos.O problema de Fluxo de Potência Ótimo (FPO) vem sendo estudado desde a década de 1960 e vários métodos de resolução são encontrados na literatura. Em particular, os métodos de Pontos-Interiores (PI) vêm tendo um grande destaque devido a sua robustez e eficiência, alcançando convergência com reduzido número de iteraçoes mesmo em problemas com um grande número de variáveis. Apesar do seu bom desempenho computacional no que se refere a número de iterações e tempo de processamento, os métodos de PI não possuem convergência global, que consiste em encontrar uma solução independente da escolha do ponto inicial. Um dos objetivos desta pesquisa é o desenvolvimento de um algoritmo de FPO globalmente convergente, ou seja, capaz de encontrar uma solução sempre que uma existir. Para atingir esse objetivo, o algoritmo proposto associa métodos de Região de Confiança com os eficientes métodos de PI. Algoritmos globalmente convergentes são invariavelmente computacionalmente intensivos, de forma que três abordagens distintas para a resolução dos subproblemas de região de confiança foram estudadas. Quanto à formulação do problema de FPO, foram desenvolvidos modelos que consideram dispositivos FACTS, como o UPFC (Unified Power Flow Controller), e restrições de estabilidade de tensão. Algumas opções de função objetivo, como minimização de perdas, minimização de corte de carga e maximização de carregamento, foram testadas e o desempenho do algoritmo proposto foi avaliado comparando-o ao desempenho de algoritmos de PI já conhecidos.O problema de Fluxo de Potência Ótimo (FPO) vem sendo estudado desde a década de 1960 e vários métodos de resolução são encontrados na literatura. Em particular, os métodos de Pontos-Interiores (PI) vêm tendo um grande destaque devido a sua robustez e eficiência, alcançando convergência com reduzido número de iteraçoes mesmo em problemas com um grande número de variáveis. Apesar do seu bom desempenho computacional no que se refere a número de iterações e tempo de processamento, os métodos de PI não possuem convergência global, que consiste em encontrar uma solução independente da escolha do ponto inicial. Um dos objetivos desta pesquisa é o desenvolvimento de um algoritmo de FPO globalmente convergente, ou seja, capaz de encontrar uma solução sempre que uma existir. Para atingir esse objetivo, o algoritmo proposto associa métodos de Região de Confiança com os eficientes métodos de PI. Algoritmos globalmente convergentes são invariavelmente computacionalmente intensivos, de forma que três abordagens distintas para a resolução dos subproblemas de região de confiança foram estudadas. Quanto à formulação do problema de FPO, foram desenvolvidos modelos que consideram dispositivos FACTS, como o UPFC (Unified Power Flow Controller), e restrições de estabilidade de tensão. Algumas opções de função objetivo, como minimização de perdas, minimização de corte de carga e maximização de carregamento, foram testadas e o desempenho do algoritmo proposto foi avaliado comparando-o ao desempenho de algoritmos de PI já conhecidos.
|
2 |
Um metodo do tipo lagrangiano aumentado com região de confiança / On augmented lagrangian methods with trust-regionCastelani, Emerson Vitor 13 August 2018 (has links)
Orientador: Jose Mario Martinez Perez / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-13T22:53:44Z (GMT). No. of bitstreams: 1
Castelani_EmersonVitor_D.pdf: 695936 bytes, checksum: 9434e07a75cde154320a5156daf73684 (MD5)
Previous issue date: 2009 / Resumo: Ao resolver problemas de programação não linear usando métodos do tipo Lagrangiano Aumentado, um fenômeno chamado voracidade pode ocorrer. Quando este fenômeno ocorre, o método busca pontos muito infactíveis com valor de função objetivo muito pequeno. Tais fatos ocorrem, em geral, na primeiras iterações e então, o parâmetro de penalidade precisa crescer excessivamente, tornado os subproblemas mal condicionados, prejudicando assim a convergência. Desta forma, o propósito deste trabalho é adicionar restrições de caixas adaptativas (região de confiança) a cada subproblema em cada iteração externa, de modo que, a distância entre dois iterando consecutivos das iterações externas é controlada. O novo método inibe a possibilidade do fenômeno de voracidade. Resultados de convergência, limitação de parâmetro de penalidade e exemplos numéricos são apresentados / Abstract: When we solve nonlinear programming problems by means of algorithms of kind of Augmented Lagrangian, a phenomenon called greediness may occur. Unconstrained minimizers attract the iterates at early stages of the calculations and, so, the penalty parameter needs to grow excessively, in such a way that ill-conditioning harms the overall convergence. In this sense, the proposal of this work is to add an adaptive artificial box constraint (trust-region) to the subproblem at every outer iteration, in such a way that the distance between consecutive outer iterates is controlled. The new method inhibits the possibility of greediness phenomenon. Convergence proofs and numerical examples are given / Doutorado / Otimização / Doutor em Matemática Aplicada
|
3 |
Um metodo de região de confiança para minimização irrestrita sem derivadas / On the region method for unconstrained minimization without derivativesJimenez Urrea, Liliana 12 August 2018 (has links)
Orientador: Vera Lucia da Rocha Lopes / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-12T04:23:12Z (GMT). No. of bitstreams: 1
JimenezUrrea_Liliana_M.pdf: 3576733 bytes, checksum: 0e211564f3f081c060195cfa21aa4135 (MD5)
Previous issue date: 2008 / Resumo: Neste trabalho apresentamos métodos de minimização irrestrita, de uma função objetivo F de várias variáveis, que não fazem uso nem do gradiente da função objetivo - métodos derivative-free, nem de aproximações do mesmo. Nosso objetivo básico foi estudar e comparar o desempenho de métodos desse tipo propostos por M. J. D. Powell, que consistem em aproximar a função F por funções quadráticas - modelos quadráticos - e minimizar tal aproximação em regiões de confiança. Além do algoritmo de Powell de 2002 - UOBYQA - são testados: uma variante dele, na qual utilizamos a escolha de alguns parâmetros, por nós estabelecida, e também a nova versão de NEWUOA, proposta por Powell em 2006. Todos os testes foram realizados com problemas da coleção de Hock-Schittkowski. São comparados os resultados numéricos obtidos pelos métodos de Powell: entre eles mesmos e também entre eles e um método de busca padrão de autoria de Virginia Torczon, o qual define, em cada iteração, um conjunto padrão de direções de busca a partir do ponto atual, procurando melhores valores para F. / Abstract: In this work we study numerical methods to solve problems of nonlinear programming without constraints, which do not make use, neither of the gradient of the objective function, nor of approaches to it. A method that consists on the approximation of the function F by a quadractic model, due to Powell (2002), UOBYQA, and a variant of this method were implemented. A new version of the NEWUOA, introduced by Powell in 2006, was also implemented. Besides the Powell algorithm, commentaries of the implementations are done. Numerical tests of such implementations with problems of the Hock-Schittkowski collection, are made at the end of the work. There are also comparisons of the Powell methods among themselves, and also a comparison among the Powell methods with a pattern search method, which looks for the improvement of the value of the objective function throughout a set of directions, depending on the current point. Such a method is due to Virginia Torczon. / Mestrado / Otimização / Mestre em Matemática Aplicada
|
4 |
Sobre o uso de regiões de confiança para minimização com restrições lineares / On trust-region algorithms for linearly constrained minimizationXavier, Larissa Oliveira, 1983- 11 September 2011 (has links)
Orientadores: Sandra Augusta Santos, José Mário Martinez Pérez / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-19T09:49:40Z (GMT). No. of bitstreams: 1
Xavier_LarissaOliveira_D.pdf: 21963947 bytes, checksum: 9419832d56a36ea9d96e9f9d7e75ce57 (MD5)
Previous issue date: 2011 / Resumo: Neste trabalho apresentamos o estudo de dois algoritmos baseados em regiões de confiança para minimização de problemas suaves com restrições lineares. O primeiro algoritmo proposto, com uma estratégia de restrições ativas, foi desenvolvido a partir do trabalho de Gay. O segundo algoritmo apresentado explora a técnica de pontos interiores presente nos métodos de barreira. Ambos são acompanhados de respectivos resultados de boa definição e de convergência global e local. Os dois algoritmos foram testados para a resolução de problemas de distribuição de pontos em polígonos, utilizando o algoritmo de Rojas, Santos e Sorensen, livre de fatorações de matrizes, para resolver os subproblemas internos de região de confiança. O problema dos pontos no polígono não foi encontrado na literatura para o teste de algoritmos de otimização e pode ser visto como uma modificação do problema de distribuição de pontos em caixas, sugerido por Powell. Embora possua estrutura favorável para a geração de problemas com dimensão variável, e potencialmente de grande porte, no contexto livre de fatorações, trata-se de um problema difícil e desafiador, com uma grande quantidade de minimizadores locais. Experimentos numéricos comparativos entre as propostas foram feitos e analisados, indicando que os algoritmos são efetivos na obtenção de pontos estacionários de segunda ordem, com ligeira vantagem para o desempenho do algoritmo baseado em restrições ativas, em termos do tempo computacional empregado / Abstract: In this work two trust-region-based algorithms are analyzed for linearly constrained minimization. The first one is an active-set method, based on Gay's ideas. The second one uses interior-point techniques of barrier methods. Both algorithms are proved to be well defined and accompanied by the respective convergence results. The implementation was developed resting upon Rojas, Santos and Sorensen matrix-free algorithm for solving the inner trust-region subproblems. The family of adopted test-problems involves the distribution of points in a polygon, a modification of Powell's problem of distributing points in a square. Despite its favorable structure for generating instances with variable and potentially large dimension, in the matrix-free context, the problem is indeed hard and challenging, with many local minimizers. Comparative computational experiments illustrate the performance of the proposed algorithms, showing that both are effective to obtain second-order stationary points, with a slight advantage of the active-set-based algorithm when it comes to the CPU time spent / Doutorado / Matematica Aplicada / Doutor em Matemática Aplicada
|
Page generated in 0.1086 seconds