Spelling suggestions: "subject:"furnace."" "subject:"eburnace.""
211 |
Cr (VI)-Containing electri furnace dust and filter cake: characteristics, formation, leachability and stabilisationMa, Guojun 18 October 2006 (has links)
In South Africa, the ferrochromium industry produces approximately 100,000 t bag house filter dust and slurry, while the stainless steel industry produces 24,000 t of dust annually [17,39]. The toxic substances in these wastes potentially pose a threat to the environment and human health, especially Cr (VI) due to its toxic, carcinogenic, highly soluble and strongly oxidizing properties. Therefore, the existence and treatment of wastes from stainless steel and ferrochrome production remain a challenge and an issue of concern. The increase of environmental legislation globally and the trend towards sustainable development are drives for alternatives to landfill. In the present thesis, the characteristics, formation mechanisms, leachability and stabilisation of the Cr (VI)-containing electric furnace dust and filter cake were investigated using various techniques such as XRD, XRF, TG/DTA, XPS, SEM-EDS, FT-IR, Raman spectrometer and UV/Vis spectrometer. The electric furnace dust and filter cake are very fine particles. Stainless steel dust forms by the entrainment of charge materials, evaporation or volatilisation of elements and ejection of slag and metal by spitting or the bursting of gas bubbles. It was found that ferrochrome dust is formed by the ejection of slag and metals droplets from the electrode hole, the entrainment of charge materials, vaporisation as well as the formation and precipitation of compounds from vaporised species in the off-gas duct. Filter cake contains crystal phases (CaF2 and CaSO4 ) and metal rich amorphous phases. It is formed due to super saturation and precipitation. Leaching experiments on the wastes showed that Cr (VI) rapidly leaches out by distilled water. Bricks were produced by mixing wastes (stainless steel plant dust, ferrochrome dust and filter cake) and clay. The optimum sinter parameter was found to be 1100oC and 5 hours for a 50wt% SPD-50wt% AS mixture in the brick. The leachability of Cr(VI) is strongly influenced by the mass%CaO/mass%SiO2 ratio and alkali metal oxides content in the wastes. The emission factors from the stabilised wastes (SPD, FCD1, FCD2 and FC) are similar to those reported for the cement industry. Semi-dynamic leaching tests indicated that the predominant leaching mechanisms of chromium species are initial surface wash-off followed by matrix diffusion. / Thesis (PhD (Metallurgical Engineering))--University of Pretoria, 2007. / Materials Science and Metallurgical Engineering / unrestricted
|
212 |
Energibalans av två glödgningsugnar inom ett integrerat stålverkFärnström, Dennis January 2017 (has links)
Av den globala energianvändningen så upptar stålindustrin hela 5 % och sett till CO2 – utsläppen som orsakats av mänskliga faktorer så upptar stålindustrin hela 7 %. Stålindustrin är en energikrävande industri och därför är det viktigt att se över dess energianvändning för en nutida och framtida hållbarhet. Ugnar är en av de bidragande faktorerna till den höga energianvändningen och de drivs på icke förnybara bränslen, därför är studier kring detta av hög relevans. Moderna tekniker gällande ugnar i dagens läge riktar sig mycket åt förbränningstekniken, d.v.s. förbränningen av bränslet som ugnarna drivs på. Oxyfuel-tekniken innebär att bränslet förbränns med ren syrgas istället för luft, vilket i huvudsakligt syfte är för att höja förbränningsverkningsgraden. Att använda brännare som kan återvinna rökgaser är också en modern teknik för energieffektiv ugnsdrift. Outokumpu är ett världsledande företag inom tillverkningen av rostfritt stål och anläggningen i Avesta är ett integrerat verk, det betyder att ståltillverkningen i Avesta omfattar hela processen från råmaterial och skrot till färdig produkt. Anläggningen består av tre huvudsakliga verk som kallas stålverket, varmbandsverket och slutligen Linje 76 & Z-High vilket är avdelningen som dessa två glödgningsugnar befinner sig. Det huvudsakliga syftet med denna rapport är att uppvisa en energibalans av två glödgningsugnar inom Outokumpus anläggning i Avesta, avgränsningarna är också tydliga då energibalansen drar sig ifrån den första ugnens inlopp till den andra ugnens utlopp. Och det är den termiska energieffektiviteten som har studerats, d.v.s. hur mycket energi man får ut av den olja som sätts in. Framtagandet av data har genomförts med hjälp av historiska data gällande ugnarnas drift under ett tidsspann på 3 månader tillbaka i tiden, även manuella temperaturmätningar har genomförts. En verkningsgrad har tagits fram för varje ugn och ugnarna tillsammans, verkningsgraderna har beräknats genom att väga förhållandet mellan hur mycket energi som det glödgade materialet har tagit upp, med hur mycket olja som har använts under samma tidsspann. De huvudsakliga resultaten till denna studie tyder sig på att ugnarna är effektiva till att värma stålet och har relativt små transmissionsförluster från ugnarnas omslutande areor. Däremot så finns potential att kunna återvinna mer värme ifrån rökgaser i avgaspannan. / The steel industry occupies the whole 7 % of the global carbon dioxide emissions caused by human factors and 5 % of the global energy usage. The steel industry is an energy intense industry and it’s therefore important to analyze its energy use for its future sustainability. Furnaces are driven on non-renewable fuels and are one of the devoting components to the high energy consumption, so studies of this are of high relevance. Regarding modern techniques of furnaces in today’s mode are much concentrated on the combustion, which means the combustion of the fuel that supplies the furnaces with heat. Oxy-fuel technology means that the fuel is combusted with pure oxygen instead of air, and its purpose is to increase the combustion efficiency. A second modern technology is the usage of burners that are able to recycle flue gases as an increase of energy efficiency. Outokumpu is a world leading company in the manufacture of stainless steel and the plant in Avesta is an integrated steel mill, which means the steel production cover the entire process from scrap and raw material to finished product. The plant consists of three main works called the steel mill, hot rolling mill and KBR L76 which is the department for these annealing furnaces. The main objective of this report is to present an energy balance of two annealing furnaces at the Outokumpu plant in Avesta. The boundary of the study is clear, the energy balance will take part from the inlet of the first furnace to the outlet of the second one. It’s the thermal energy efficiency that has been studied, that is to say how much energy you get from the fuel that is added. Information has been collected using historical data on the operation of the furnaces during a three month period of time, also manual temperature measurements has been carried out. By calculations an efficiency has been developed for each furnace and the furnaces together. This has been carried out by weighing the proportion of the amount of heat that all material have accumulated, with the amount of oil used during the same time. The results of this study mainly indicate that the furnaces are effective in heating the steel, and its heat losses from the surrounding areas are small. On the other hand, there is potential for recycling more heat regarding the use of flue gases in the exhaust-boiler.
|
213 |
Non-isothermal reaction of iron ore-coal mixturesCoetsee, Theresa 09 July 2008 (has links)
Extensive work is reported in literature on the reduction of iron oxides with carbonaceous reductants. Most of this work considered isothermal reaction of the material mixture, although as shown in some studies, isothermal reaction conditions are not often the norm because of sample size and heating arrangement in the experiment. In industrial processes, such as the rotary hearth type processes and the IFCON® process for iron ore reduction, the norm is non-isothermal reaction. Simulation of industrial processes should take non-isothermal reaction into account if the heat transfer effects within the process are to be investigated. To avoid the complications of coal volatiles in the experimental set-up, few studies were done with coal as reductant. The primary aim of the work presented here is to quantify radiation heat transfer to the surface of an iron ore and coal mixture heated uni-directionally from the sample surface to show the importance of heat transfer in the IFCON® process. Secondary aim of this work are to show the effects of layer thickness, coal volatiles, phase chemistry and particle size in this reaction system. The experimental set-up consists of a tube furnace modified to transport the sample into and out of the experimental tube furnace heating zone under a protected atmosphere, whilst the product gas is analysed throughout the experiment by quadropole mass spectrometer. The sample surface temperature, heating zone temperatures and material bed temperatures were measured throughout the experiment. A sample cutter-splitter was developed to divide the reacted sample into three horizontal segments for chemical analyses. The sample surface temperature and the heating zone temperatures were used as inputs to a radiation network calculation to quantify radiation heat transferred to the sample surface. The radiation network calculation was calibrated against heat-mass balance calculations for pre-reduced ore and graphite samples reacted at furnace temperatures of 1300, 1400 and 1500°C. The results show that radiative and conduction heat transfer control prevails for 16 mm to 40 mm material layers heated uni-directionally from the material layer surface. It is shown that coal volatiles contribute to reduction in the stagnant material layer. Also, smaller particle sizes result in increased reaction rates because of a decrease in the diffusion limited effects which were seen in reaction of the base size of coal and ore particles. / Thesis (PhD (Metallurgical Engineering))--University of Pretoria, 2009. / Materials Science and Metallurgical Engineering / unrestricted
|
214 |
Reduction of iron ore fines in the Ifcon furnaceLourens, Leon 19 August 2008 (has links)
This work involved an investigation into the mechanisms governing the reduction of material in the solids bed of the Ifcon® process. Thermo gravimetric analyses were done to investigate the influence of various operational parameters on the rate of solid state reduction. The experiments were modeled, and model predictions were compared to experimental results. Kinetic data was analised and the reduction rate constants were calculated. The rate constants were used as inputs to a model, which describes the reduction behaviour and temperature profile in a composite solids bed (similar to that in the Ifcon® process). High temperature reduction- and melting tests were done in an 150 kW induction furnace, to simulate final reduction in a solids bed. The temperature profile through the solids bed was measured and results were compared to model predictions. Finally the extent to which solid state reduction occurs in the solids bed was estimated as a function of production rate. / Dissertation (MEng (Metallurgical Engineering))--University of Pretoria, 2008. / Materials Science and Metallurgical Engineering / unrestricted
|
215 |
Investigation into methods for the calculation and measurement of pulverised coal boiler flue gas furnace exit temperatureTootla, Naeem Ebrahim January 2016 (has links)
The boiler flue gas furnace exit temperature (FET) is a key operating parameter of coal fired steam boilers. From the design perspective, the FET is vital for materials selection and sizing of heat transfer surfaces. From an operating perspective, it is a major indicator of the rate of combustion and heat transfer that is occurring within the furnace. Downstream of the furnace, the FET has a significant impact on both the performance and reliability of the boiler heat exchangers, which ultimately impacts on both boiler efficiency and availability. Monitoring of the FET can advise operating and engineering corrective actions which will ultimately result in better efficiency, reliability and availability together with the associated economic benefits. Therefore, methods of determining FET are investigated. Two methods are focused on for this study, one indirect and one direct. The indirect method studied is a mass and energy balance method which begins with a global boiler mass and energy balance to calculate the major boiler flow rates of coal, air and flue gas which are difficult to measure online. These parameters are then used as inputs into a furnace or backpass mass and energy balance to calculate the furnace exit temperature. The method is applied to a case study, and is evaluated in terms of the measurement uncertainties which are propagated on the intermediate parameters calculated, as well as on the final calculated FET. The main conclusions are that this indirect method contains various uncertainties, due to parameters which have to be assumed such as (i) the distribution of ingress air (also called tramp air) in the different sections of the boiler and (ii) the estimation of the share of water evaporation heat transfer occurring in the water walls of the furnace part of the boiler. The method is however still useful and can be easily applied to any boiler layout and can be used as a reference tool to verify other measurements. The direct method studied is acoustic pyrometry. The work specifically focuses on the sources of error in determining the temperature from the measurement of the time of flight of sound, the impact of particle concentration on the speed of sound through a gas-particle mixture, and the temperature profile reconstruction from acoustic time of flight measurements. A limited set of physical testing was also carried out using one acoustic generator and receiver to take measurements on a real coal power plant. As part of this physical testing, the detection of time of flight from acoustic signals was explored. Already installed radiation pyrometers were also used as a reference for interpreting the acoustic measurements. The indications are that the acoustic pyrometer provides a more representative temperature measurement than the radiation pyrometers. The uncertainty of the acoustic measurement for the same case study as the indirect method was determined and compared with the calculated result. While many aspects still need to be researched further, this initial study and experimental testing produced very promising results for future application of acoustic pyrometry for better monitoring of the coal combustion processes in power plant boilers.
|
216 |
Numerical Study of Arc Exposure about Water-Panel Overheating in an Electric Arc FurnaceQingxuan Luo (11825660) 20 December 2021 (has links)
<p>Electric arc furnace (EAF) is a
furnace that utilizes electric energy and chemical energy to melt scraps and
produce liquid steel. During the industrial process of EAF, an electric arc
will be generated around the electrode located at the center of the furnace,
and this phenomenon will generate a lot of heat. If any part of the electric
arc is exposed to the freeboard region, a region above the slag layer inside
the furnace, the heat emitted by this exposed arc can significantly heat on
side wall temperatures, resulting in an overheating issue of side wall. Water-cooling
panels (WCP) have been used to cool down the side wall, but the concentrated
overheating area, may damage the water-cooling panel. In this study, a
combination of slag foaming phenomenon and electric arc has been considered. A
calculator is developed based on several arc models to calculate the parameters
about slag foaming and arc power. The parameters can be used as input in a
computational fluid dynamics (CFD) model. The commercial software, ANSYS FLUENT<sup>®</sup>, was utilized to give a prediction
of the side wall temperature distribution of an EAF. Data from the plant has
been used to validate the calculation results. Furthermore, a series of
parametric studies has been investigated to study the influence of operating
conditions. The developed model can help to predict the risk of overheating from
given electrode conditions and slag compositions.</p>
|
217 |
Kotel na spoluspalování plynů / Co-Combustion Gas BoilerPavlík, Marek January 2019 (has links)
This thesis deals with the design of a co-combustion gas boiler for coal gas and blast furnace gas mixture. The calculation includes stoichiometry, determinination of the boiler efficiency, steam production rate and heating surfaces sizing. This thesis also includes technical documentation of designed gas boiler. The calculation of the boiler meets the values specified by the scripts and also by documentation from PBS. The boiler was designed for 113.9 MW and 93.77 % efficiency.
|
218 |
Kotel na spalování vysokopecního plynu / Gas BoilerŠtipský, Pavel January 2020 (has links)
The aim of this diploma thesis is to design a gas boiler for blast furnace gas combustion. At the beginning is performed stoichiometry of the used fuel to determine the optimal amount of combustion air and the actual amount of flue gas. Subsequently is determined the overall efficiency, together with heat and steam power of the boiler. The main part of the thesis is focused on the design of the combustion chamber and the dimensioning of heat exchange surfaces. At the end of the thesis are performed hydraulic and aerodynamic calculations to determine the pressure loss on the side of the working medium and flue gas. Drawing documentation can be found in attachments.
|
219 |
Digital Twin of a Reheating FurnaceHalme Ståhlberg, Daniel January 2021 (has links)
In this thesis, a proof of concept of a digital twin of a type of reheating furnace, the walking beam furnace, is presented. It is created by using a machine learning concept called a neural network. The digital twin is trained using real data from a walking beam furnace located in Swerim AB, Luleå, and is taught to predict the temperature in the furnace using air, fuel and pressure as inputs. The machine learning technique used is an artifical neural network in the form of a multilayer perceptron model. The resulting model consists of 3 layers, input, hidden and output layer. The hyperparameters is decided by using grid search cross validation. The hyperparameters chosen to use in this thesis was amount of epochs, optimizer, learning rate, batch size, activation function, regularizer and amount of neurons in the hidden layer. The final settings for these can be found in table. The digital twin is then evaluated comparing predicted temperatures and actual temperatures from the measured data. The end result shows that the twin performs reasonably well. The predictions differs from measured temperature with a percentage around 0.5% to 1.5%.
|
220 |
Navrhněte řešení spalování s vysokou účinností a nízkou emisí NOx pro granulační parní kotel,130 t/h,s parametry páry 13,6 MPa,540°C / The proposal of measures for high efficiency burning and lowering of NOx emissions for boiler 130 t/h,13,9 MPa,540°CBurýšek, Jan January 2014 (has links)
This thesis concerns with control calculation of steam boiler. The work is divided into several parts. In the individual parts are executed stechiometry calculations, the enthalpy of flue gas and power of the heat exchange surfaces. Based on the results it is proposed location of the SCR.
|
Page generated in 0.035 seconds