• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 212
  • 56
  • 26
  • 17
  • 15
  • 14
  • 13
  • 9
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 456
  • 456
  • 301
  • 213
  • 159
  • 80
  • 61
  • 55
  • 53
  • 51
  • 49
  • 46
  • 45
  • 44
  • 43
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Alternative rownstream roles for Ste2p and an α-arrestin in sacccharomyces cerevisiae mating

2014 November 1900 (has links)
Ste2p and Ste3p are well-characterized yeast pheromone G-protein Coupled Receptors (GPCR) those are involved in the signaling of mating responses that lead to cell fusion. Their signaling–associated interactions with G-protein/MAPK signal transduction machinery are well established, homologous to those in mammalian systems, and serve as a simplified model system in GPCR research. While the arrestin- mediated biased signaling mechanism of mammalian GPCR has not been discovered for the pheromone receptors, a recent demonstration of α-arrestins being involved in the internalization of the pheromone GPCR, Ste2p was reported. The present study was designed to reevaluate and extend the alternate functionality for pheromone receptors and to determine the role of yeast arrestins in the yeast mating. Specific residues in the TM6 of Ste2p exhibiting strong mating and constitutive MAPK signaling were combined and investigated in terms of their effect on MAPK signal transduction leading to cell cycle arrest as well as their impact on downstream mating projection formation and zygote formation events. Our findings indicate that Ste2p possess as specific residues that govern its relative bias for mediating MAPK signaling or mating events. Relative dose response experiments accounting for systemic and observation bias for these mutations yielded evidence of mutational-derived functional biases for Ste2p and further validated the alternate pheromone dependent functionalities for Ste2p. Further, arrestin knockout and knock-in studies showed that Art1 (Ldb19) is selectively involved in the regulation of zygote formation but not MAPK signal transduction following the binding of ligand to Ste2p receptors. In addition, ligand stimulated selective localization of Art1 (Ldb19) to the mating projection, implicating it in the regulation of downstream mating functionalities. Overall, while leaving the full mechanism of alternate/biased Ste2p signaling to be elucidated, these results highlight the possibility of continued relevance of the yeast pheromone-mating pathway as a simplified model for GPCR research in the context of arrestin-mediated biased GPCR signaling.
182

Nature and Function of the Signaling Complex Formed by the M2 Muscarinic Cholinergic Receptor

Ma, Amy Wing-Shan 05 December 2012 (has links)
G protein-coupled receptors (GPCRs) are known to exist as oligomers, but there is much uncertainty over the oligomeric size, the number of interacting G proteins and the stability of that interaction. The present approach to these questions has been threefold. Monomers of the M2 muscarinic receptor were purified from Spodoptera frugiperda (Sf9) cells and reconstituted in phospholipid vesicles, where they spontaneously formed tetramers. The size of the reconstituted complex was determined from its electrophoretic mobility after cross-linking and inferred from a quantitative, model-based assessment of cooperative effects in the binding of two muscarinic antagonists: N-methylscopolamine and quinuclidinylbenzilate. Binding of the agonist oxotremorine-M to receptor reconstituted with purified G proteins revealed at least three classes of sites that interconverted from higher to lower affinity upon the addition of guanylylimidotriphosphate (GMP-PNP). The binding properties resemble those of muscarinic receptors in myocardial preparations, thereby implying the existence of tetramers in native tissues. G proteins that copurify with the M2 receptor from cardiac membranes also were found to exist as oligomers, some of which contain both alpha(o) and alpha(i2), and the purified complexes contained receptor and G protein in near-equal amounts. A tetrameric receptor implies a tetramer of G proteins, a conclusion that is supported by the distribution of sites between different states identified in the binding of [35S]GTPgammaS to the purified complex. Covalent adducts of a GPCR fused to a Galpha-subunit provide a model system in which the relationship between receptor and G protein complex is defined with respect to stability and composition. Such a fusion of the M2 receptor and Galpha(i1) underwent a cleavage near the amino terminus of the alpha-subunit, however, flagging the likelihood of similar effects in other such adducts. Truncation of the amino terminus prior to fusion generated a stable product that revealed GMP-PNP-sensitive, biphasic binding of oxotremorine-M and noncompetitive interactions between N-methylscopolamine and quinuclidinylbenzilate. A covalent RG complex therefore exhibits the functional properties of M2 receptors in native systems. These observations are consistent with the notion that signaling through the M2 receptor occurs via cooperative interactions within a stable complex that comprises four receptors and four G proteins.
183

Molecular Mechanisms for Regulation of the G Protein-activated Inwardly Rectifying K^+ (GIRK) Channels by Protein Kinase C

ZHANG, Liyan, LEE, Jong-Kook, KODAMA, Itsuo 12 1900 (has links)
国立情報学研究所で電子化したコンテンツを使用している。
184

G Protein-Coupled Receptors; Discovery of New Human Members and Analyses of the Entire Repertoires in Human, Mouse and Rat

Gloriam, David E. January 2006 (has links)
G protein-coupled receptors (GPCRs) are signal mediators that have a prominent role in the regulation of physiological processes and they make up the targets for 30-45% of all drugs. Papers I and II describe the discovery of new human GPCRs belonging to the Rhodopsin family, a family which contains many common drug targets. The new receptors have only weak relationships to previously known GPCRs. However, they have been evolutionary conserved in several species and most of them display distinct expression patterns. In paper III we identified new human GPCRs belonging to the Adhesion family, which is characterised by very long N-termini containing conserved domains. The different compositions of conserved domains as well as the expression patterns suggest that the Adhesions can have several different functions. In paper IV we revealed remarkable species variations in the repertoires of Trace Amine-Associated Receptors (TAARs), which are relatives of the biogenic amine receptors. The human, mouse and rat TAAR genes are located in only one locus and are therefore most likely the result of gene tandem duplications. 47 of the 57 zebrafish TAARs were mapped to nine different loci on six chromosomes containing from 1 to 27 genes each. This study suggests that the TAARs arose through several different mechanisms involving tetraploidisation, block duplications, and local duplication events. Papers V and VI are overall analyses of the repertoires of GPCRs in humans, mice and rats; which contain approximately 800, 1800 and 1900 members, respectively. The repertoires were compared to distinguish between species-specific and common (orthologous) members, something which is important for example when predicting drug effects from experiments in rodents. The Glutamate, Adhesion, Frizzled and Secretin families show no or very little variation between human and rodents, whereas the repertoires of olfactory, vomeronasal and Taste2 receptors display large differences between all three species.
185

Studies of the Neuropeptide Y Receptor Y2 in Human and Zebrafish

Fällmar, Helena January 2011 (has links)
The G-protein coupled receptors (GPCRs) comprise the largest family of receptors in humans and other vertebrates. They are embedded in the cell membrane and are activated by many different signaling molecules. Activation modulates cellular signal transduction pathways and influences many physiological processes. Therefore the GPCRs are important as targets for numerous drugs. The receptors for NPY (neuropeptide Y) belong to GPCRs of Class A (rhodopsin-like). NPY and its related peptides PYY and PP are involved in the regulation of appetite, blood pressure and many other processes. They share a common structure and interact with the receptors Y1, Y2, Y4 and Y5 in mammals, and, in addition, Y7 and Y8 in amphibians and bony fishes. This thesis is focused on the human Y2 receptor, known to reduce appetite, by investigating the importance of thirteen amino acid residues for ligand binding. Mutagenesis followed by functional expression and receptor binding was conducted. During the course of this work several new GPCR crystal structures have been resolved, thereby improving the receptor modeling in papers I-III. The major finding is that even though the Y1 and Y2 receptors have evolved from a common ancestor, their points of ligand interaction differ and have thus changed during evolution. In general, the positions investigated resulted in milder changes in the ligands’ affinities for Y2 compared to Y1. These findings were incorporated in the design of new Y1 and Y2 receptor models, leading to improved understanding of how such divergent receptors, sharing only 30 percent sequence identity, can still interact with the same ligands. Notably, several of the mutations introduced in Y2 resulted in increased affinity. A novel NPY receptor gene named Y2-2 was identified in the genomes of zebrafish and medaka. This brings the number of zebrafish NPY receptors to seven. The binding characteristics of zebrafish Y2-2 differed from zebrafish Y2 mainly in the interaction with NPY13-36 and the antagonist BIIE0246. In conclusion, these results increase our understanding of ligand interactions with GPCRs and will be useful for refinement of ligand-receptor models for future development of receptor subtype-selective drugs.
186

The structural and functional study of GIT1 paxillin binding domain

Zhang, Ziwei, January 2008 (has links) (PDF)
Thesis (Ph.D.)--University of Tennessee Health Science Center, 2008. / Title from title page screen (viewed on November 5, 2008). Research advisor: Jie Zheng, Ph.D. Document formatted into pages (xiii, 140 p. : ill.). Vita. Abstract. Includes bibliographical references (p. 105-116).
187

KISS1 matastasis suppressor secretion is required for metastasis suppression

Nash, Kevin T. January 2006 (has links) (PDF)
Thesis (Ph. D.)--University of Alabama at Birmingham, 2006. / Title from first page of PDF file (viewed Feb. 19, 2009). Includes bibliographical references.
188

Signaling by protease-activated receptors in gastrointestinal smooth muscle /

Sriwai, Wimolpak. January 2007 (has links)
Thesis (Ph. D.)--Virginia Commonwealth University, 2007. / Prepared for: Dept. of Physiology. Bibliography: leaves 158-171. Available online via the Internet.
189

Differential coupling of RGS3s and RGS4 to GPCR-GIRK channel signaling complexes /

Jaén, Cristina. January 2006 (has links)
Dissertation (Ph.D.)--University of South Florida, 2006. / Includes vita. Includes bibliographical references (leaves 110-125). Also available online via the World Wide Web.
190

Wnt signaling regulated by Frizzled and HIPK1 /

Louie, Sarah. January 2004 (has links)
Thesis (Ph. D.)--University of Washington, 2004. / Vita. Includes bibliographical references (leaves 78-98).

Page generated in 0.0422 seconds