Spelling suggestions: "subject:"1protein"" "subject:"deprotein""
91 |
PHARMACOLOGICAL IMPLICATIONS OF ADENOSINE 2A RECEPTOR- DOPAMINE TYPE 2 RECEPTOR HETEROMERIZATIONHatcher-Solis, Candice N 01 January 2016 (has links)
G protein-coupled receptors (GPCRs) are heptahelical, transmembrane proteins that mediate a plethora of physiological functions by binding ligands and releasing G proteins that interact with downstream effectors. GPCRs signal as monomers, complexes of the same receptor subtype (homomers), or complexes of different receptor subtypes (heteromers). Recently, heteromeric GPCR complexes have become attractive targets for drug development since they exhibit distinct signaling and cell-specific localization from their homomeric counterparts. Yet, the effect of heteromerization on the pharmacology of many GPCR homomers remains unknown. Therefore, we have undertaken the task to examine the effect of heteromerization on Gs signaling through the adenosine 2A receptor (A2AR) and Gi signaling through the dopamine type 2 receptor (D2R) since the A2AR-D2R heteromer is an emerging therapeutic target for Parkinson’s disease (PD). We examined the effect of heteromerization on A2AR and D2R homomeric signaling using electrophysiology and the Xenopus laevis oocyte heterologous expression system. G protein-coupled inwardly rectifying potassium channels (GIRKs) were used as reporters for Gi signaling because activation leads to direct Gbeta-gamma (Gβγ)-mediated stimulation of the GIRK current. We also coupled GIRK channels to Gs signaling by overexpressing Gαs and signaling throughGαsβγ. Our electrophysiological assay is innovative because it allows us to optimize the conditions of heteromerization and directly observe GPCR signaling at the G protein level. Our data demonstrate that heteromer formation alone decreases dopamine-elicited Gi signaling through the D2R and CGS-21680-elicited Gs signaling through the A2AR. Furthermore, this reciprocal antagonism was predominately due to changes in efficacy versus potency. We also examined crosstalk observing that applying agonists or antagonists to the adjacent receptor further modulate this inhibition with the combination of agonists and antagonists relieving inhibition. Mutating the A2AR-D2R heteromer interface abrogated all of the aforementioned ligand-induced effects on G protein signaling through the A2AR-D2R heteromer. We are currently aiming to validate our results from the oocyte experiments with an in vivo model. Our data further elucidate the effect of various ligands on G protein signaling through the A2AR- D2R heteromer, which may facilitate future studies that examine A2AR-D2R heteromer signaling.
|
92 |
Regulator of G protein signaling 6 (RGS6), a multifarious and pleiotropic modulator of G protein coupled receptor signaling in brainStewart, Adele Marie 01 May 2014 (has links)
Transmembrane signal transduction by ligand-activated G protein-coupled receptors (GPCRs) controls virtually every aspect of mammalian physiology, and this receptor class is the target of 40-50% of currently marketed pharmaceuticals. In addition to the clinical use of direct GPCR agonists and antagonists, it is now believed that GPCR effectors and regulators may also be viable drug targets with improved therapeutic efficacy and specificity. The prototypic role of Regulator of G protein Signaling (RGS) proteins is inhibition of G protein signaling through acceleration of GTP hydrolysis by GΑ, which promotes re-association of GΑ and GΒΓ subunits with the receptor at the cell membrane. In this way, RGS proteins determine the magnitude and duration of the cellular response to GPCR stimulation. Though RGS protein biochemistry has been well elucidated in vitro, the physiological functions of each RGS family member remain largely unexplored.
RGS6 belongs to the R7 subfamily of RGS proteins originally identified in brain. Our acquisition of an RGS6-/- mouse allowed us to survey RGS6 expression in all tissues of the body revealing the greatest expression of RGS6 in brain. Despite robust neural RGS6 expression, little is known regarding functional roles of RGS6 in the brain and spinal cord. In addition, we identified several novel, higher molecular weight RGS6 immunoreactive bands specifically present in the nervous system. The plan of this thesis work was multifaceted. We sought to elucidate novel GPCR signaling cascades modulated by RGS6 in brain while simultaneously characterizing the expression patterns and identity of the novel RGS6 species specifically detected in the nervous system. Considering the large diversity of RGS6 isoforms present in brain, the abundance of potential RGS6 binding partners, and the possibility of discovering new mechanisms involved in RGS6 regulation, elucidation of the novel RGS6 molecular species is of paramount importance.
Utilizing RGS6-/- mice we identified RGS6 as a critical modulator of two GPCRs in brain. First, by inhibiting the serotonin receptor 1A (5-HT1AR)-adenylyl cyclase (AC) axis, RGS6 functions to promote anxiety- and depression-related behaviors in mice. As a result, RGS6-/- mice exhibit a robust anxiolytic and antidepressant phenotype remarkably similar to that of animals treated chronically with therapeutic doses of selective serotonin reuptake inhibitors (SSRIs). RGS6 also inhibits GABAB receptor (GABABR)-G protein- activated inwardly rectifying potassium (GIRK) channel current in cerebellar granule cells, and loss of RGS6 results in cerebellar ataxia and gait abnormalities reversible by GABABR blockade. Furthermore, evaluation of voluntary alcohol drinking behaviors in WT versus RGS6-/- mice revealed a striking reduction in alcohol intake resulting from RGS6 loss in both acute and chronic alcohol consumption paradigms due, at least in part, to potentiation of GABABR signaling. Thus, RGS6 inhibitors have potential clinical utility in the treatment of mood disorders and alcoholism.
We have shown that one novel RGS6 immunoreactive band expressed in the brain and spinal cord is a phospho-protein sensitive to Λ phosphatase-mediated dephosphorylation. Further, new information acquired from PCR amplification of RGS6 mRNA species from human brain cDNA libraries has necessitated substantial revisions to the RGS6 splicing scheme devised by the Fisher laboratory in 2003. To the 36 isoforms generated from two alternate transcription start sites (RGS6L vs. RGS6), the inclusion or exclusion of exons 14 and 17, and variable splicing to one of 7 different 3' terminal exons, we have added the possible insertion of three novel internal exons (A1, A2, A3), a retained intron, and two new 3' terminal exons. As a result, the number of RGS6 mRNAs present in brain could be as many as 248 unique species, an astonishing diversity unprecedented in the RGS protein family.
|
93 |
Erzeugung und Charakterisierung von Mausmodellen mit lichtsensitivem Geschmackssystem zur Aufklärung der neuronalen Geschmackskodierung / Generation and characterization of transgenic lines of mice to elucidate neuralnetworks engaged in processing of gustatory informationLoßow, Kristina January 2011 (has links)
Die Wahrnehmung von Geschmacksempfindungen beruht auf dem Zusammenspiel verschiedener Sinneseindrücke wie Schmecken, Riechen und Tasten. Diese Komplexität der gustatorischen Wahrnehmung erschwert die Beantwortung der Frage wie Geschmacksinformationen vom Mund ins Gehirn weitergeleitet, prozessiert und kodiert werden.
Die Analysen zur neuronalen Prozessierung von Geschmacksinformationen erfolgten zumeist mit Bitterstimuli am Mausmodell. Zwar ist bekannt, dass das Genom der Maus für 35 funktionelle Bitterrezeptoren kodiert, jedoch war nur für zwei unter ihnen ein Ligand ermittelt worden. Um eine bessere Grundlage für tierexperimentelle Arbeiten zu schaffen, wurden 16 der 35 Bitterrezeptoren der Maus heterolog in HEK293T-Zellen exprimiert und in Calcium-Imaging-Experimenten funktionell charakterisiert. Die Daten belegen, dass das Funktionsspektrum der Bitterrezeptoren der Maus im Vergleich zum Menschen enger ist und widerlegen damit die Aussage, dass humane und murine orthologe Rezeptoren durch das gleiche Ligandenspektrum angesprochen werden. Die Interpretation von tierexperimentellen Daten und die Übertragbarkeit auf den Menschen werden folglich nicht nur durch die Komplexität des Geschmacks, sondern auch durch Speziesunterschiede verkompliziert.
Die Komplexität des Geschmacks beruht u. a. auf der Tatsache, dass Geschmacksstoffe selten isoliert auftreten und daher eine Vielzahl an Informationen kodiert werden muss. Um solche geschmacksstoffassoziierten Stimuli in der Analyse der gustatorischen Kommunikationsbahnen auszuschließen, sollten Opsine, die durch Licht spezifischer Wellenlänge angeregt werden können, für die selektive Ersetzung von Geschmacksrezeptoren genutzt werden. Um die Funktionalität dieser angestrebten Knockout-Knockin-Modelle zu evaluieren, die eine Kopplung von Opsinen mit dem geschmacksspezifischen G-Protein Gustducin voraussetzte, wurden Oozyten vom Krallenfrosch Xenopus laevis mit dem Zwei-Elektroden-Spannungsklemm-Verfahren hinsichtlich dieser Interaktion analysiert. Der positiven Bewertung dieser Kopplung folgte die Erzeugung von drei Mauslinien, die in der kodierenden Region eines spezifischen Geschmacksrezeptors (Tas1r1, Tas1r2, Tas2r114) Photorezeptoren exprimierten. Durch RT-PCR-, In-situ-Hybridisierungs- und immunhistochemische Experimente konnte der erfolgreiche Knockout der Rezeptorgene und der Knockin der Opsine belegt werden.
Der Nachweis der Funktionalität der Opsine im gustatorischen System wird Gegenstand zukünftiger Analysen sein. Bei erfolgreichem Beleg der Lichtempfindlichkeit von Geschmacksrezeptorzellen dieser Mausmodelle wäre ein System geschaffen, dass es ermöglichen würde, gustatorische neuronale Netzwerke und Hirnareale zu identifizieren, die auf einen reinen geschmacks- und qualitätsspezifischen Stimulus zurückzuführen wären. / Taste impression is based on the interaction of taste, smell and touch. To evaluate the nutritious content of food mammals possess five distinct taste qualities: sweet, bitter, umami (taste of amino acids), sour and salty. For bitter, sweet, and umami compounds taste signaling is initiated by binding of tastants to G protein-coupled receptors. The interactions of taste stimuli, usually watersoluble chemicals, with their cognate receptors lead to the activation of the G protein gustducin, which, in turn, initiates a signal resulting in the activation of gustatory afferents.
However, details of gustatory signal transmission and processing as well as neural coding are only incompletely understood. This is partly due to the property of some tastants to elicit several sensations simultaneously, unspecific effects caused by the temperature, viscosity, osmolarity, and pH of the solvents, as well as by mechanical stimulation of the tongue during stimulus application. The analysis of gustatory processing of taste information are mainly based on mouse models after stimulation with bitter taste stimuli. Even though it is known that the mouse genome codes for 35 bitter taste receptor genes only few of them had been analysed so far.
For better understanding and interpretation of animal experiments 16 mouse bitter receptors had been analysed by Calcium Imaging experiments with HEK293T cells. The data reveal that mouse bitter taste receptors are more narrow tuned than human bitter taste receptors, proving that the ligand spectra of murine and human orthologous receptors are not complient.
In order to avoid the disturbing effects of solvents and stimulus application on the analysis of gustatory information transfer and processing, I employ an optogenetical approach to address this problem.
For this purpose I generated three strains of gene-targeted mice in which the coding regions of the genes for the umami receptor subunit Tas1r1, the sweet receptor subunit Tas1r2 or the bitter taste receptor Tas2r114 have been replaced by the coding sequences of different opsins (photoreceptors of visual transduction) that are sensitive to light of various wavelengths. In these animals I should be able to activate sweet, bitter, or umami signalling by light avoiding any solvent effects.
In initial experiments of this project I demonstrated that the various visual opsins indeed functionally couple to taste signal transduction pathway in oocyte expression system, generating basic knowledge and foundation for the generation of the gene-targeted animals. The knockout-knockin strategies have been successfully realized in the case of all three mouse models, revealed by RT-PCR, in situ hybridization and immunohistochemical analysis of taste papillae. All data confirm that the particular taste receptors have been replaced by the different opsins in taste cells.
Further analysis concerning the functional consequences of opsin knockin and taste receptor knockout are part of prospective work.
|
94 |
Assay and array technologies for G-protein coupled receptors.Bailey, Kelly January 2009 (has links)
The overall aim of this thesis is to investigate strategies to aid in the measurement of G-protein coupled receptor (GPCR) activity for high-throughput screening and sensing applications. GPCRs are cell surface receptors which have seven membrane spanning domains. They are the largest family of membrane proteins in the human genome and are involved in a number of physiological and pathophysiological pathways. They are the most widely targeted protein family for therapeutics being the target for over 30% of the currently available prescription drugs (Jacoby et al. 2006). For this reason commercial interest and investment into compound screening using these receptors as targets is of high importance in lead drug discovery. Additionally, the extensive ligand range of the GPCR superfamily, which includes light, odorants/ volatiles, neurotransmitters and hormones, make them an attractive biological recognition element in biosensor applications. This thesis demonstrates the functional expression of the H1-histamine, M2-muscarinic and α₂ₐ-adrenergic receptors of the G-protein coupled receptor family, along with their associated G-proteins (Gα, Gβ and Gγ). Expression was achieved using the Sf9/baculovirus expression system. The G-proteins were successfully incorporated into an assay system using time-resolved fluorescence resonance energy transfer (TRFRET). TR-FRET was used in order to create a homogeneous assay format capable of monitoring GPCR activation through the movement of the G-protein subunits. Fluorescence changes in the TR-FRET assay indicated a change in distance between the Gα subunit and Gβγ dimer. The separation of the Gα subunit and the Gβγ dimer after activation resulted in a significant decrease in TR-FRET measurement. The homogeneous set-up of the TR-FRET assay could potentially be adaptable to an array based format. This thesis describes the capture of vesicles containing functional GPCRs onto a solid substrate via the specific interaction between complementary oligonucleotides. GPCR presence and function within the immobilized vesicles, was demonstrated using fluorescent ligands. Further to this, alternative lipid hosts (to the vesicles), known as cubosomes, were introduced. When tagged with an oligonucleotide, these cubosome particles were also shown to immobilize site specifically onto a complementary oligonucleotide surface. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1369537 / Thesis (Ph.D.) -- University of Adelaide, School of Molecular and Biomedical Science, 2009
|
95 |
Assay and array technologies for G-protein coupled receptors.Bailey, Kelly January 2009 (has links)
The overall aim of this thesis is to investigate strategies to aid in the measurement of G-protein coupled receptor (GPCR) activity for high-throughput screening and sensing applications. GPCRs are cell surface receptors which have seven membrane spanning domains. They are the largest family of membrane proteins in the human genome and are involved in a number of physiological and pathophysiological pathways. They are the most widely targeted protein family for therapeutics being the target for over 30% of the currently available prescription drugs (Jacoby et al. 2006). For this reason commercial interest and investment into compound screening using these receptors as targets is of high importance in lead drug discovery. Additionally, the extensive ligand range of the GPCR superfamily, which includes light, odorants/ volatiles, neurotransmitters and hormones, make them an attractive biological recognition element in biosensor applications. This thesis demonstrates the functional expression of the H1-histamine, M2-muscarinic and α₂ₐ-adrenergic receptors of the G-protein coupled receptor family, along with their associated G-proteins (Gα, Gβ and Gγ). Expression was achieved using the Sf9/baculovirus expression system. The G-proteins were successfully incorporated into an assay system using time-resolved fluorescence resonance energy transfer (TRFRET). TR-FRET was used in order to create a homogeneous assay format capable of monitoring GPCR activation through the movement of the G-protein subunits. Fluorescence changes in the TR-FRET assay indicated a change in distance between the Gα subunit and Gβγ dimer. The separation of the Gα subunit and the Gβγ dimer after activation resulted in a significant decrease in TR-FRET measurement. The homogeneous set-up of the TR-FRET assay could potentially be adaptable to an array based format. This thesis describes the capture of vesicles containing functional GPCRs onto a solid substrate via the specific interaction between complementary oligonucleotides. GPCR presence and function within the immobilized vesicles, was demonstrated using fluorescent ligands. Further to this, alternative lipid hosts (to the vesicles), known as cubosomes, were introduced. When tagged with an oligonucleotide, these cubosome particles were also shown to immobilize site specifically onto a complementary oligonucleotide surface. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1369537 / Thesis (Ph.D.) -- University of Adelaide, School of Molecular and Biomedical Science, 2009
|
96 |
Assay and array technologies for G-protein coupled receptors.Bailey, Kelly January 2009 (has links)
The overall aim of this thesis is to investigate strategies to aid in the measurement of G-protein coupled receptor (GPCR) activity for high-throughput screening and sensing applications. GPCRs are cell surface receptors which have seven membrane spanning domains. They are the largest family of membrane proteins in the human genome and are involved in a number of physiological and pathophysiological pathways. They are the most widely targeted protein family for therapeutics being the target for over 30% of the currently available prescription drugs (Jacoby et al. 2006). For this reason commercial interest and investment into compound screening using these receptors as targets is of high importance in lead drug discovery. Additionally, the extensive ligand range of the GPCR superfamily, which includes light, odorants/ volatiles, neurotransmitters and hormones, make them an attractive biological recognition element in biosensor applications. This thesis demonstrates the functional expression of the H1-histamine, M2-muscarinic and α₂ₐ-adrenergic receptors of the G-protein coupled receptor family, along with their associated G-proteins (Gα, Gβ and Gγ). Expression was achieved using the Sf9/baculovirus expression system. The G-proteins were successfully incorporated into an assay system using time-resolved fluorescence resonance energy transfer (TRFRET). TR-FRET was used in order to create a homogeneous assay format capable of monitoring GPCR activation through the movement of the G-protein subunits. Fluorescence changes in the TR-FRET assay indicated a change in distance between the Gα subunit and Gβγ dimer. The separation of the Gα subunit and the Gβγ dimer after activation resulted in a significant decrease in TR-FRET measurement. The homogeneous set-up of the TR-FRET assay could potentially be adaptable to an array based format. This thesis describes the capture of vesicles containing functional GPCRs onto a solid substrate via the specific interaction between complementary oligonucleotides. GPCR presence and function within the immobilized vesicles, was demonstrated using fluorescent ligands. Further to this, alternative lipid hosts (to the vesicles), known as cubosomes, were introduced. When tagged with an oligonucleotide, these cubosome particles were also shown to immobilize site specifically onto a complementary oligonucleotide surface. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1369537 / Thesis (Ph.D.) -- University of Adelaide, School of Molecular and Biomedical Science, 2009
|
97 |
Exprese a regulace Dexras1 ve strukturách mozku potkana za vývoje. / The expression and regulation of Dexras1 in the rat brain under developmentKyclerová, Hana January 2017 (has links)
The Dexras1 gene was identified after induction by glucocorticoid dexamethasone in pituitary tumor cells. Dexras1 has also been found in other brain regions and in the peripheral organs but its expression is rhythmic only in the suprachiasmatic nuclei of the hypothalamus (SCN), where the mammalian main circadian pacemaker is located. Dexras1 expression was also affected by stress, amphetamine or prenatal alcohol exposure. Its role in cells has not yet been explained. Dexras1 GTPase activity has been determined to be dependent on the NMDA receptor stimulation. Dexras1 acts as an activator of G protein signaling in cells. Its role has been detected in neuronal iron homeostasis or in the regulation of main circadian pacemaker sensitivity to photic and nonphotic synchronization cues during the day. The aim of our study was to describe the Dexras1 mRNA expression in the rat brain during ontogeny and during development after visual sensory deprivation by in situ hybridization. The earliest Dexras1 expression was detected on embryonic day 20, in the rat SCN and the ventral posteromedial thalamic nucleus. Postnatally, its expression also appeared in other sensory areas, motor thalamic areas, hypothalamic areas involved in the regulation of water homeostasis, or in limbic system. Our results further show...
|
98 |
The physiological relevance of the G protein-coupled receptor P2Y14Meister, Jaroslawna 04 November 2014 (has links)
UDP-sugars were identified as extracellular signaling molecules, assigning a new function to these compounds in addition to their well-defined role in intracellular substrate metabolism and storage. Previously regarded as an orphan receptor, the G protein-coupled receptor (GPCR) P2Y14 (GPR105) was found to bind extracellular UDP and UDP-sugars. Little is known about the physiological functions of this GPCR. To study its physiological role a gene-deficient
(KO) mouse strain expressing the bacterial LacZ reporter gene was used to monitor the physiological expression pattern of P2Y14. P2Y14 is mainly expressed in pancreas and salivary glands and in subpopulations of smooth muscle cells of the gastrointestinal tract,
bronchioles, blood vessels and uterus. Among other phenotypical differences KO mice showed a significantly impaired glucose tolerance following oral and intraperitoneal glucose application. An unchanged insulin tolerance points towards an altered pancreatic islet function. Transcriptome analysis of pancreatic islets showed that P2Y14 deficiency
significantly changed expression of components involved in insulin secretion. Insulin secretion tests revealed a reduced insulin release from P2Y14-deficient islets highlighting P2Y14 as a previously unappreciated modulator of proper insulin secretion.
|
99 |
Adaptive gene regulation in the striatum of RGS9-deficient miceBusse, Kathy, Strotmann, Rainer, Strecker, Karl, Wegner, Florian, Devanathan, Vasudharani, Gohla, Antje, Schöneberg, Torsten, Schwarz, Johannes January 2014 (has links)
Background: RGS9-deficient mice show drug-induced dyskinesia but normal locomotor activity under unchallenged
conditions. Results: Genes related to Ca2+ signaling and their functions were regulated in RGS9-deficient mice. Conclusion: Changes in Ca2+ signaling that compensate for RGS9 loss-of-function can explain the normal locomotor activity in RGS9-deficient mice under unchallenged conditions. Significance: Identified signaling components may represent novel targets in antidyskinetic therapy. The long splice variant of the regulator of G-protein signaling 9 (RGS9-2) is enriched in striatal medium spiny neurons and dampens dopamine D2 receptor signaling. Lack of RGS9-2 can promote while its overexpression prevents drug-induced dyskinesia. Other animal models of drug-induced dyskinesia rather pointed towards overactivity of dopamine receptor-mediated signaling. To evaluate changes in signaling pathways mRNA expression levels were determined and compared in wild-type and RGS9- deficient mice. Unexpectedly, expression levels of dopamine receptors were unchanged in RGS9-deficient mice, while several genes related to Ca2+ signaling and long-term depression were differentially expressed when compared to wild type animals. Detailed investigations at the protein level revealed hyperphosphorylation of DARPP32 at Thr34 and of ERK1/2 in striata of RGS9-deficient mice. Whole cell patch clamp recordings showed that spontaneous synaptic events are increased (frequency and size) in RGS9-deficient mice while long-term depression is reduced in acute brain slices. These changes are compatible with a Ca2+-induced potentiation of dopamine receptor signaling which may contribute to the drug-induced dyskinesia in RGS9-deficient mice.:Introduction; Materials and methods; Results; Discussion
|
100 |
The molecular associations in clathrin-coated pit regulate β-arrestin-mediated MAPK signaling downstream of μ-opioid receptor / クラスリン被覆小孔の構成分子との会合がμオピオイド受容体下流のβアレスチンを介したMAPK経路のシグナル伝達を制御するSato, Atsuko 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第24525号 / 医博第4967号 / 新制||医||1065(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 渡邊 直樹, 教授 中川 一路, 教授 秋山 芳展 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
Page generated in 0.0738 seconds