• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 58
  • 15
  • 9
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 113
  • 113
  • 42
  • 20
  • 20
  • 19
  • 15
  • 15
  • 14
  • 14
  • 12
  • 11
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Activity Analysis of the Fragile X Mental Retardation Protein Isoforms 1, 2 and 3: Recombinant Bacterial Expression and Purification with Subsequent Quantitative Analysis of Binding to in vivo Target G quadruplex Forming Ribonucleaic Acids and Regulation of Translation

Evans, Timothy Lee 19 July 2011 (has links)
The loss of expression of the fragile X mental retardation protein (FMRP) leads to fragile X syndrome. Fragile X syndrome is the most prevalent inheritable mental retardation. FMRP has two types of RNA binding domains, two K-homology domains and an arginine-glycine-glycine box domain, and is proposed to act as a translation regulator of specific mRNA. Despite extensive research, the mechanism by which FMRP loss leads to the fragile X syndrome remains unclear. Thus, there is high interest to produce sufficient quantities of pure recombinant FMRP for biochemical and biophysical studies of the protein function. However, the recombinant bacterial expression of FMRP has had limited success, and subsequent recombinant eukaryotic and in vitro systems may produce FMRP which is posttranslationally modified, as phosphorylation and arginine methylation have been shown to occur on FMRP. In this study, we have successfully isolated the conditions for recombinant expression, purification and dialysis of full-length FMRP using Escherichia coli, with a high yield. The expression of FMRP using E. coli renders the protein devoid of the posttranslational modifications of phosphorylation and arginine methylation, allowing for the further study of the direct effects of these modifications individually and simultaneously. Additionally, FMRP has been shown to undergo alternative splicing, with one of the splicing sites in close proximity to the FMRP domain shown to be involved in binding G quadruplex mRNA with high affinity and specificity. We have analyzed how naturally occurring truncations in the FMRP sequence affect its RNA binding affinity, by applying the expression, purification and dialysis process to the second and third longest FMRP isoforms, followed by subsequent analysis of the G quadruplex mRNA binding properties by fluorescence spectroscopy. Our results show that as FMRP gets truncated by alternative splicing, its mRNA binding affinity increases. To test a model we proposed for FMRP translation regulation activity, we developed a luciferase reporter gene construct that contains the G quadruplex structure in the mRNA 5���-untranslated region. Using luminescence spectroscopy to analyze luciferase translation, we showed that low levels of full-length FMRP reduces luciferase translation, and as the concentration of full-length FMRP increases the luciferase translation increases. / Bayer School of Natural and Environmental Sciences / Chemistry and Biochemistry; / PhD; / Dissertation;
22

Synthetic Development of the Tri- and Pentamethine Cyanine Chromophore for Biomolecular Interactions

Owens, Eric A 06 May 2012 (has links)
The synthetic methodology of tri- and pentamethine carbocyanines and their interactions with biomolecules will be discussed in two chapters. The first chapter describes the preparation of halogenated carbocyanine dyes that display multiple charges; furthermore, these particular compounds were examined for their ability to bind G-quadruplex DNA with selectivity over duplex DNA and have potential for developing novel chemotherapeutic agents. The second section discusses the synthetic methods utilized to prepare trimethine cyanine fluorophores. This chapter will show how varying the N-indolenyl substituients’ hydrophobicity from ethyl to phenylpropyl influences the binding to Human Serum Albumin (HSA); additionally, alternating the terminal heterocyclic moieties of the cyanine dye has a direct quantitative effect on the biomolecular interaction. These identical compounds were recognized to be structurally analogous to agents that commonly interact with Protein Arginine Methyl Transferase (PRMT) and these compounds display low IC50 values toward inhibition of PRMT1 with unique NIR imaging properties.
23

Synthesis of DNA Minor Groove Binders and Investigation of Biophysical Properties

Liu, Meng-Chi 18 January 2012 (has links)
I am interested in the design of DNA binding ligands which are including DNA minor groove binders and G-quadruplex stabilizing agents. Certain natural products, distamycin and belomycin are considered as models for designing new DNA binding agents. A variety of DNA binding ligands were synthesized and accordingly characterized by different bioassays. In the series of azo-pyrrole-polyamide, it showed slight DNA binding affinity but has the properties of DNA photo-cleavage and recognition of mixed sequence. The thiophene series showed strong binding ability for duplex DNA. Bithiophene series showed a remarkable binding affinity to duplex DNA which is compatible to natural products netropsin and distamycin. The pyridodicarboxamide series remain intramolecular hydrogen bonding with poor preferences for duplexes DNA even though they stabilized quadruplex DNA. The bithiophene-bipyrimidine compound binds to specific hexanucleotide sequence 5¡¦-AAGCTT-3¡¦ and acts as an unfused quadruplex stabilization ligand. In the quinoline series, the combination of quinoline and methylpyrrole polyamide proves the attenuation effect for quadruplexes stabilization which provides a novel strategy for development of quadruplex binding logands. In this study, several series of small molecules for DNA binding have been successfully synthesized and proved to interact with DNA secondary structures according to the particular properties of themselves.
24

Synthesis of DNA Minor Groove Binders with Diazine, Quinoline and Sugars moieties.

Tung, Hung-Wei 28 August 2012 (has links)
Certain natural products, Ditamycin and Netropsin are considered as models of designing new DNA binding agents. A variety of DNA binding ligands were synthesized and accordingly characterized by different bioassays. In the series of azo-polyamide, it showed slight DNA binding affinity but has the properties of DNA photo-cleavage and recognition of mixed sequence. The carbohydrate-azo-polyamide series show the properties of DNA photo-cleavage and more effective in vitro experiment. In the quinoline series proves the attenuation effect for G-quadruplex stabilization which provides a novel strategy for development of G-quadruplex binding ligands.
25

DNA-based molecular circuits for diagnostics and therapeutics

Codrea, Vlad Alexandru 08 October 2013 (has links)
Nucleic acids are a uniquely flexible and multi-faceted class of molecules that fulfill fundamental and defining tasks such as replication and determination of heritable characteristics in every living organism. From the microscopic to the gigantic, from the most primitive to the most complex, life has been both molded and served by nucleic acids. Nucleic acid circuits straddle the realm of nature and technology. The elegance of interaction between nucleic acid molecules invites us to gain a deeper understanding of the naturally occurring systems they compose and to apply our ingenuity and foresight toward developing ever more complex synthetic systems. Nature has provided these basic building blocks, which we can now arrange – and augment – for the purpose of creating molecular-level machinery. Here we describe some ways in which we have rationally harnessed nucleic acids. In preparation for outbreaks of novel and deadly avian influenza viruses, we used quantitative polymerase chain reaction (qPCR) to track the number of flu virus particles surviving in the presence of potential antiviral drugs. We engineered tunable on/off switches that can be used to evaluate a series of conditions for diagnostic applications or to enable ‘smart’ drugs that sense, analyze, and respond to their microenvironment. We optimized the conditions for, and used, a unique set of guanine-rich DNA sequences called G-quadruplexes, whose enzymatic and structural properties make them prime effector candidates in diagnostic platforms. G-quadruplex folding powers isothermal DNA amplification, and the small organic molecules they bind endow G-quadruplexes with expanded catalytic abilities. We genotyped drug resistance mutations in tuberculosis via visually detectable color changes in the reaction buffer. We developed a paper fluidics assay that employs soluble and bead-immobilized nucleic acids to scan for genes in tuberculosis, and upon detection, to generate a readily observable discoloration on the paper strip. Finally, we probed the boundary of nucleic acid circuitry by attempting to expand its language via the incorporation of unnatural nucleobases into oligonucleotide components of a catalytic hairpin assembly (CHA) circuit. We subsequently evaluated the resilience of the unnatural CHA circuit to contamination by random DNA species, such as may be encountered in clinical samples. / text
26

Investigation of G-Quadruplex DNA cleavage through development of a solution-based fluorescent assay

Schoonover, Michelle Lea 04 September 2015 (has links)
In vitro, G-rich sequences form highly stable secondary structures known as G-Quadruplexes. These structures have been characterized by circular dichroism nuclear magnetic resonance and X-ray crystallography; although their detection in vivo has remained elusive. Due to the biological implication of a transisent and polymorphic secondary structure forming within the hypothetical G-Quadruplex forming regions, there is growing interest to understand their in vivo molecular dynamics. / text
27

Characterization of Secondary DNA Structures Formed in the c-myb and hTERT Promoters and Their Potential Role in the Regulation of Transcription

Palumbo, SunMi Lee January 2009 (has links)
In this dissertation, the formation of unusual G-quadruplexes in the critical regions of the c-myb and hTERT promoters for control of promoter activity was investigated.The c-myb promoter contains three copies of an almost perfect (GGA)4 sequence. We demonstrate that the each (GGA)4 repeat forms a tetrad:heptad G-quadruplex and any two of the three can intramolecularly dimerize to form T:H:H:T G-quadruplexes. The three T:H:H:T G-quadruplex combinations are of differing degrees of stability and can be further stabilized by G-quadruplex interactive compounds. We also demonstrate that the c-myb G-quadruplex forming region is a critical transcriptional regulatory element and interacts with various nuclear proteins including MAZ (Myc Associated Zinc finger protein). The data from luciferase reporter assay show that the c-myb GGA repeat region plays dual roles as a transcriptional activator and an inhibitor by serving as binding sites for the activators and by forming G-quadruplex structures in the region, respectively. Furthermore, we show that MAZ is a transcriptional repressor of the c-myb promoter and binds to both the double-stranded and T:H:H:T G-quadruplex-folded conformations of the GGA repeat region of the c-myb promoter.The hTERT core promoter contains a G-rich region of 12 consecutive G-tracts, which includes three critical Sp1 binding sites. Although this G-rich region has the potential to form multiple G-quadruplexes, our investigation on the full-length G-rich sequence demonstrate that the G-rich region forms a unique G-quadruplex structure in which two tandem intramolecular G-quadruplex structures are present, consisted of one G-quadruplex formed by the G-tracts 1-4 and the other formed by the G-tracts 5, 6, 11, and 12. We also demonstrate that the latter unusual structure contains a 26-base middle loop that likely forms a hairpin structure and is more stable than the other conventional G-quadruplex. Significantly, the formation of this unusual tandem G-quadruplex structure in the full-length will disable all three critical Sp1 binding sites, which will dramatically downregulate hTERT expression. G-quadruplex formation in the hTERT promoter suggests that the effect of G-quadruplex interactive ligands on telomerase inhibition and telomere shortening may be exerted by the direct interaction between the hTERT G-quadruplex structure and the ligands.
28

Identification and Development of Novel Compounds for the Treatment of Human Cancers

Carey, Steven Spencer January 2008 (has links)
Although some progress has been made in the treatment of cancer over the last sixty years, the majority of chemotherapeutics has fallen short. Because general chemotherapies that target DNA replication have only a limited efficacy and significant non-target side-effects, a new paradigm for cancer drug development has been adopted. Using a molecular targeted approach, new gene and protein targets have been identified and the development of chemotherapies that are specific to these targets has already begun. In this study, compounds that interact with two key cancer targets, the G-quadruplex of the c-Myc promoter and p-glycoprotein, have been investigated. By developing such compounds, improvements in treatment efficacy is anticipated with an aspiration for decreased mortality attributable to cancer.Formation of DNA secondary structures, such as the G-quadruplex, in the NHE III1 region of the c-Myc promoter has been shown to repress c-Myc transcription. Because c-Myc is an oncogene that is overexpressed in a variety of cancers, stabilization of the G-quadruplex by small molecules would be advantageous in cancer treatment. Using Fluorescence Resonance Energy Transfer, with Taq Polymerase Stop assays for confirmation, a group of compounds were identified that stabilize the c-Myc G-quadruplex structure. Using a colon cancer model, two compounds were shown to decrease c-Myc gene and protein expression. Also, exposure to the compounds for 48 hours results in an induction of caspase-3, indicative of apoptosis. Furthermore, surface plasmon resonance suggests that compound-induced stabilization of the c-Myc G-quadruplex can prevent sustained binding of the regulatory protein NM23-H2 by increasing its dissociation from the G-quadruplex. This may subsequently prevent unraveling of the G-quadruplex.Because resistance to chemotherapy reduces its effectiveness, development of multidrug resistance (MDR) modulators was also studied. Psorospermin is a topoisomerase II-directed DNA alkylating agent active against MDR cell lines. In a study examining the mechanism of psorospermin's P-glycoprotein modulation, Flow Cytometry demonstrated that doxorubicin-resistant multiple myeloma cells pre-treated with psorospermin enhanced intracellular retention of doxorubicin. Because neither transcription of mdr1 nor translation of P-glycoprotein was downregulated by psorospermin, resistance reversal is most likely due to a direct interaction between the side chain of psorospermin and P-glycoprotein, inhibiting drug efflux.
29

G-quadruplex recognition and isolation with small molecules

Mûller, Sebastian January 2011 (has links)
An increasing interest in non-canonical nucleic acid structures has drawn the attention of the scientific community during the last few decades. One such structure, the G-quadruplex, has been the focus of an increasing number of scientists as G-quadruplexes are believed to play a role in biological processes such as telomere integrity and gene expression. Their existence in vivo is largely unproven but they have stimulated a lot of research into small molecules that interact with them. The development of a new class of such molecules is described in this thesis. A member of this family showed to be very selective in stabilising one particular G-quadruplex. The further development of another family of G-quadruplex interacting small molecules is also presented in this thesis and some of their effects in cellulo were assessed. Based on the scaffold of this family, an affinity probe was developed, which can mediate the isolation of its nucleic acid targets from human cells. This is the first example of the use of a small molecule with an affinity tag that has been used to isolate a nucleic acid target in a structure specific manner from human cells.
30

Using Infrared Spectroscopy to Uncover Structure in Biomolecular Assemblies Related to Disease: Applications to Nucleic Acid and Peptide Oligomers and Aggregates

Price, David Andrew 01 September 2020 (has links)
The functional and pathogenic roles of biomolecules are often coupled to the self-association of their basic units into oligomers and aggregates whose structural details are difficult to distinguish because of their insoluble and heterogenous nature. This work focuses on DNA G-quadruplex motifs and amyloid peptides whose oligomers and aggregates are associated with numerous biological roles and human diseases. Infrared (IR) spectroscopy is a powerful tool which probes vibrational transitions whose signatures report on their arrangement within molecules. Advances in two-dimensional infrared (2D IR) spectroscopy have allowed structural characterization in increasingly complex biomolecules that are not amenable to traditional high-resolution techniques. However, careful consideration of the physical phenomena that lead to IR spectra are necessary to make accurate assignments. In the first portion of this work, using FTIR and 2D IR, we determine spectral markers that can differentiate size, metal ion coordination, and topology in DNA G-quadruplex motifs. IR studies aided by isotope labeling define the physical origin of these markers and allow for the construction of a structural landscape in parallel DNA G-quadruplex motifs. It is also shown that 2D IR and isotope editing probes site-specific structural changes in G-quadruplex motifs that can differentiate ion identity and location based on spectral shifts. In the latter portion of this work, we use a combination of spectroscopy and imaging techniques to show that a peptide derived from the human pro-apoptotic protein BAX forms amyloid aggregates whose structure is dependent on the presence of model membranes. Combined, the work in this thesis allows for the formulation of multiple hypotheses based on IR structural assignments regarding disease states and functional mechanisms of these systems.

Page generated in 0.0417 seconds