Spelling suggestions: "subject:"GABA-A 1receptor"" "subject:"GABA-A 2receptor""
1 |
Regulation of the GABA(A) receptor gene family during cerebellar ontogenyBeattie, Christine Elizabeth January 1993 (has links)
No description available.
|
2 |
GABA-steroid effects in healthy subjects and women with polycystic ovary syndrome / GABA-steroid effects : in healthy subjects and women with polycystic ovary syndromeHedström, Helena January 2011 (has links)
Background: The progesterone metabolite allopregnanolone is involved in several clinical conditions in women, e.g. premenstrual dysphoric disorder. It is a very potent GABA-steroid with GABA-A receptor effects similar to other GABA-agonists, e.g. benzodiazepines, and it causes sedation. An objective way to examine effects on the GABA-A receptor in humans is to measure saccadic eye velocity (SEV), which is reduced by GABA-agonists, e.g. allopregnanolone. Animal studies suggest that allopregnanolone is involved in the regulation of gonadotropin secretion via the GABA-A receptor, but this has not been studied in humans. Polycystic ovary syndrome (PCOS) is the most common endocrine disturbance among women of fertile age (5–10%), characterized by polycystic ovaries, menstrual dysfunction, hyperandrogenity, and 50% have obesity. Studies have shown higher allopregnanolone levels in overweight people. PCOS women have increased levels of androstanediol, an androgen metabolite which is an GABA-A receptor agonist. Tolerance often occurs when persons are exposed to high levels of GABAergic modulators. It has not been studied whether GABA-A receptor sensitivity in PCOS women is changed. Another progesterone metabolite, isoallopregnanolone, is the stereoisomere of allopregnanolone but has not been shown to have any GABA-A receptor effect of its own. Instead it has often been used to control steroid specificity to allopregnanolone. Aims: To compare the effects of allopregnanolone and isoallopregnanolone on gonadotropin secretion. To compare allopregnanolone levels, GABA-A receptor sensitivity to allopregnanolone and effects on gonadotropin secretion in both cycle phases and PCOS conditions. To examine pharmacokinetics and pharmacodynamic properties for isoallopregnanolone. Method: In the follicular phase healthy women were examined for the effect of allopregnanolone or isoallopregnanolone on gonadotropin secretion. PCOS women and healthy women in both cycle phases were given allopregnanolone and the differences in effects on SEV were examined, as well as changes in serum levels of gonadotropins and allopregnanolone at baseline and during the test day. Pharmacokinetics and GABA-A receptor sensitivity using SEV were explored for isoallopregnanolone in healthy women. Results: Allopregnanolone decreases gonadotropin serum levels in healthy controls in both cycle phases, but has no effect on gonadotropin secretion in women with PCOS. PCOS women have higher baseline serum levels of allopregnanolone than follicular phase controls, but lower levels than luteal phase controls. PCOS women show greater reduction in SEV to allopregnanolone than controls. Isoallopregnanolone has no effect on gonadotropin secretion. There is an effect of isoallopregnanolone on SEV, explained by a metabolism of isoallopregnanolone into allopregnanolone. Conclusion: There are significant differences in the GABA-A receptor response to a GABA-steroid in different endocrine conditions in women of fertile age examined with saccadic eye velocity. The GABA-steroid allopregnanolone decreases gonadotropin serum levels in healthy women but not in PCOS women. The lack of effect on gonadotropins by isoallopregnanolone suggests an involvement of the GABA-A receptor.
|
3 |
Early Developmental Alterations in GABAergic Protein Expression in Fragile X Knockout MiceAdusei, Daniel C. 14 December 2010 (has links)
The purpose of this study was to examine the expression of GABAergic proteins in Fmr1 knockout mice during brain maturation and to assess behavioural changes potentially linked to perturbations in the GABAergic system. Quantitative western blotting of the forebrain revealed that compared to wild-type mice, the GABAA receptor α1, β2, and δ subunits, and the GABA catabolic enzymes GABA transaminase and SSADH were down-regulated during postnatal development, while GAD65 was up-regulated in the adult knockout mouse forebrain. In tests of locomotor activity, the suppressive effect on motor activity of the GABAA β2/3 subunit-selective drug loreclezole was impaired in the mutant mice. In addition, sleep time induced by the GABAA β2/3-selective anaesthetic drug etomidate was decreased in the knockout mice. Our results indicate that disruptions in the GABAergic system in the developing brain may result in behavioural consequences in adults with fragile X syndrome.
|
4 |
Early Developmental Alterations in GABAergic Protein Expression in Fragile X Knockout MiceAdusei, Daniel C. 14 December 2010 (has links)
The purpose of this study was to examine the expression of GABAergic proteins in Fmr1 knockout mice during brain maturation and to assess behavioural changes potentially linked to perturbations in the GABAergic system. Quantitative western blotting of the forebrain revealed that compared to wild-type mice, the GABAA receptor α1, β2, and δ subunits, and the GABA catabolic enzymes GABA transaminase and SSADH were down-regulated during postnatal development, while GAD65 was up-regulated in the adult knockout mouse forebrain. In tests of locomotor activity, the suppressive effect on motor activity of the GABAA β2/3 subunit-selective drug loreclezole was impaired in the mutant mice. In addition, sleep time induced by the GABAA β2/3-selective anaesthetic drug etomidate was decreased in the knockout mice. Our results indicate that disruptions in the GABAergic system in the developing brain may result in behavioural consequences in adults with fragile X syndrome.
|
5 |
Regulation of GABAA Receptors by Protein Kinase C and Hypoxia in Human NT2-N NeuronsGao, Lei 26 October 2005 (has links)
No description available.
|
6 |
Tolerance and antagonism to allopregnanolone effects in the rat CNSTurkmen, Sahruh January 2006 (has links)
Many studies have suggested a relationship between sex steroids and negative mental and mood changes in women. Allopregnanolone, a potent endogenous ligand of the GABA-A receptor and a metabolite of progesterone, is one of the most accused neuroactive steroids. Variations in the levels of neuroactive steroids that influence the activity of the GABA-A receptor cause a vulnerability to mental and emotional pathology. In women, there are physiological conditions in which allopregnanolone production increases acutely (e.g. stress) or chronically (e.g. menstrual cycle, pregnancy), thus exposing the GABA-A receptor to high allopregnanolone concentrations. In such conditions, tolerance to allopregnanolone probably develops. We have evaluated the 3β-hydroxy pregnane steroid UC1011 as a functional antagonist to allopregnanolone-induced negative effects in rats. In vivo, we used the Morris Water Maze (MWM) test of learning and, in vitro, we studied chloride ion uptake into cortical and hippocampal membrane preparations. The steroid UC1011 reduces the allopregnanolone-induced learning impairment in the MWM and the increase in chloride ion uptake induced by allopregnanolone. To detect whether chronic tolerance develops to an allopregnanolone-induced condition, male rats were pretreated with allopregnanolone injections for three or seven days. These rats were then tested in the Morris Water Maze for five days and compared with relevant controls. Rats with seven days’ allopregnanolone pretreatment experienced improved performance compared with the acutely allopregnanolone-exposed group, reflecting chronic tolerance development. To study the GABA-A receptor changes in acute allopregnanolone tolerance, we used the silent second (SS) anaesthesia threshold method. At acute tolerance, 90 minutes of anaesthesia, the abundance of the GABA-A receptor α4 subunit and the expression of the α4 subunit mRNA in the thalamus ventral-posteriomedial (VPM) nucleus were reduced. There was also a significant negative correlation between the increase in the allopregnanolone dose needed to maintain anaesthesia and the α4 mRNA in the VPM nucleus. We also investigated whether allopregnanolone tolerance was still present one or two days after the end of the anaesthesia-induced acute tolerance. Tolerance persisted to one day, but not two days, after the treatment and the α4 subunit mRNA expression in the VPM nucleus was negatively related to the allopregnanolone doses needed after one day. In conclusion, the current thesis shows that the substance UC1011 can reduce the allopregnanolone-induced negative effects in the water maze test. Chronic allopregnanolone tolerance can develop to the effects of allopregnanolone. Allopregnanolone tolerance persists one day after the induction of acute allopregnanolone tolerance. The GABA-A receptor α4 subunit in the thalamus might be involved in the development and persistence of acute tolerance to allopregnanolone.
|
7 |
GABA-b receptors and calcium homeostasis in medullo-spinal CSF-contacting neurons / Récepteurs GABA-b et homéostasie calcique dans les neurones qui contactent le LCR médullo-spinalJurcic, Nina 20 May 2019 (has links)
Au niveau du canal central (CC) du tronc cérébral et de la moelle épinière, on trouve des neurones au contact avec le liquide céphalorachidien (Nc-LCR). Les Nc-LCR sont GABAergiques et projettent une seule dendrite dans le CC qui se termine par une large protrusion. Ils expriment sélectivement le canal PKD2L1 pour lequel des fonctions de chimio- et mécanorécepteur ont été démontrées. Compte tenu de leur localisation, de leur morphologie et de l’expression sélective de PKD2L1, les Nc-LCR représenteraient une nouvelle population de neurones sensoriels dans le SNC. Au cours de ma thèse, je me suis concentrée sur la caractérisation des canaux Ca2+ et les mécanismes de signalisation Ca2+ dans les Nc-LCR bulbo-spinaux de souris. Je rapporte que les Nc-LCR expriment des canaux Ca2+ qui sont modulés par les récepteurs métabotropiques GABAB et muscarinique. Je montre aussi l'implication des stocks intracellulaires dans la régulation du Ca2+ intracellulaire. Ensuite, je démontre pour la première fois la relation fonctionnelle entre la protrusion et le soma et indique que la protrusion serait dépourvu de conductance ionique active. Enfin, pour aborder le rôle des Nc-LCR, j'ai développé des modèles chimiogénétiques (DREADDs) et optogénétiques (channelrhodopsin) chez la souris afin de manipuler sélectivement l'activité Nc-LCR. Dans l'ensemble, les résultats de mon étude de doctorat contribuent à mieux comprendre les Nc-LCR bulbo-spinaux des mammifères en en contribuant à la caractérisation de leur physiologie et modulation. Ils ouvrent également la voie à de futures études qui permettront de démontrer le rôle de cette population neuronale dans la régulation de l'activité du SNC. / Cerebrospinal fluid-contacting neurons (CSF-cNs) located in the ependymal region around the central canal (CC) in the brainstem and the spinal cord are GABAergic neurons that project a single dendrite to the CSF and ends with a large protrusion. They selectively express PKD2L1 channel suggested to act as chemo- and mechanoreceptor. Considering their localization, morphology and selective expression of PKD2L1 channel, CSF-cNs would represent a novel population of sensory neurons within the CNS. To better understand the role of CSF-cNs in mammals, it is necessary to describe the physiological properties and modulation of CFS-cNs. In the present study, I focused on Ca2+ channels and Ca2+ signaling mechanisms in mouse medullo-spinal CSF-cNs. I report that Ca2+ channels in CSF-cNs undergo modulation by metabotropic GABAB and muscarinic acetylcholine receptors. I further show the involvement of intracellular Ca2+ stores in the regulation of intracellular Ca2+. Next, I demonstrate for the first time functional relationship between bud and soma and indicate that the bud would be devoid of active ionic conductance. Finally, to address the role of CSF-cNs, I developed chemogenetic (DREADDs) and optogenetic (channelrhodopsin) mice models to be able to selectively manipulate CSF-cN activity. Altogether, the results of my PhD study contribute to better understanding mammalian medullo-spinal CSF-cNs by providing valuable information on their physiology and modulation. They also set ground for further studies carried out in ex-vivo preparation or in vivo models to demonstrate their role in the regulation of CNS activity.
|
8 |
Design and Syntheses of Potential Drugs Based on GABA(A) Receptor PharmacophoresClement, Ella Chow 11 August 2005 (has links)
Numerous previous studies of GABAAR ligands have suggested that GABAAR agonists must be zwitterionic and feature an intercharge separation similar to that of GABA (approx. 4.7-6.0 Ã ). We have demonstrated that monomeric, homodimeric and heterodimeric non-zwitterionic GABA amides are partial, full, or superagonists at the murine GABAA receptor (GABAAR). The agonism of these GABA amides is comparable to that of THIP, as shown by in vitro assay results. The assay data indicate that the agonism of GABA amides is tether length-dependent. Optimum agonism is achieved with a tether length of four methylenes in GABA amide dimers and in GABA amides bearing pendant amide or amino groups. We have further investigated the structure-activity relationship for GABA amides on the GABAAR by performing structural modifications to both the superagonist 2c and the agonist 6c. Synergism and [3H]muscimol binding experiments show that 2c binds to the same sites as GABA. Structural modification of 2c demonstrated that partial rigidification of the tether eliminated agonism and caused ligands to behave as weak competitive antagonists. We have also investigated the agonism of four ZAPA derivatives in 36Cl- uptake functional assay. Two of them are found to be as potent as GABA. In our studies of 1,4-benzodiazepines, our goal was to synthesize three different subtypes of quaternary 1,4-benzodiazepines by use of the memory of chirality (MOC) strategy. Disappointingly, most of the deprotonation/alkylations failed, due to various reasons. The failure of the reactions of (S)-alanine-derived tetrahydro-1,4-benzodiazepin-3-ones was probably due to either the unexpected side reactions or the steric hindrance of enolate alkylation. In the case of tetrahydro-1,4-benzodiazepin-2-ones, computational studies suggested that steric hindrance by both the benzo ring and N4-allyl group might retard deprotonation at C3 by bulky bases like KHMDS or LDA. Finally, (S)-serine-derived 1,4-benzodiazepin-2-ones and their elimination products (ï ¡-methylene benzodiazepines) were prepared. These proved unreactive towards deprotonation/alkylations and conjugate additions, respectively. The low reactivity of the ï ¡-methylene benzodiazepines towards nucleophiles was attributed to highly delocalized LUMOs that failed to direct nucleophiles to the ï ¢-carbons. / Ph. D.
|
9 |
Neuron-glial Interaction in the Developing Peripheral Nervous SystemCorell, Mikael January 2011 (has links)
The nervous system, including the brain, is the most sophisticated organ in the mammalian body. In such a complex network, neuron-glial interaction is essential and controls most developmental processes, such as stem cell fate determination, migration, differentiation, synapse formation, ensheathment and myelination. Many of these events are critical for the developmental process and small errors can lead to growth retardation, malformation or disease. The understanding of the normal progress of nervous system development is fundamental and will help the discovery of new treatments for disease. This thesis discusses three types of neuron-glia interactions at different developmental stages; neural stem/progenitor cell (NSPC) differentiation, building and maintaining the structure of the sciatic nerve, and myelin formation. In Paper I we show that NSPCs, based upon their morphology and expression of specific protein markers, have the capacity to differentiate into cells of either the peripheral nervous system (PNS) or enteric nervous system (ENS) when grown with PNS or ENS primary cell cultures, or fed with conditioned medium from these. This indicates that soluble factors secreted from the PNS or ENS cultures are important for stem cell differentiation and fate determination. The adhesion protein neuronal cadherin (N-cadherin) is implicated in migration, differentiation and nerve outgrowth in the developing PNS. In Paper II N-cadherin was exclusively found in ensheathing glia (nonmyelinating Schwann cells, satellite cells and enteric glia) in contact with each other or with axons. Functional blocking of N-cadherin in dissociated fetal dorsal root ganglia (DRG) cultures led to a decrease in attachment between Schwann cells. N-cadherin-mediated adhesion of nonmyelinating Schwann cells may be important in encapsulating thin calibre axons and provide support to myelinating Schwann cells. In Paper III the inhibitory gamma aminobutyric acid (GABA) and GABAB receptors were studied in the Schwann cell of the adult sciatic nerve and DRG cultures. GABAB receptors were primarily expressed in nonmyelinating Schwann cells and protein levels decreased during development and myelination. Blocking the GABAB receptor in long-term DRG cultures led to decreased levels of mRNA markers for myelin. These results indicate that the GABA and GABAB receptors may be involved in Schwann cell myelination.
|
Page generated in 0.0438 seconds