• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 93
  • 51
  • 26
  • 15
  • 10
  • 5
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 277
  • 33
  • 33
  • 29
  • 28
  • 23
  • 22
  • 19
  • 19
  • 19
  • 17
  • 17
  • 17
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Self-assembly systems to obtain products with different applications = microemulsion, liquid crystalline and microemulsion-based gels = Sistemas auto-organizáveis na obtenção de produtos com diferentes aplicações : microemulsões, cristais líquidos e géis a base de microemulsões / Sistemas auto-organizáveis na obtenção de produtos com diferentes aplicações : microemulsões, cristais líquidos e géis a base de microemulsões

Fasolin, Luiz Henrique 22 August 2018 (has links)
Orientador: Rosiane Lopes da Cunha / Texto em inglês e português / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos / Made available in DSpace on 2018-08-22T16:01:09Z (GMT). No. of bitstreams: 1 Fasolin_LuizHenrique_D.pdf: 4514107 bytes, checksum: cbdb7bfe81fe688fefd10aac2e7238ac (MD5) Previous issue date: 2013 / Resumo: Os sistemas auto-organizáveis como meio para obtenção de produtos com diferentes características têm sido estudados como uma alternativa aos métodos tradicionais de produção de emulsões e gelificação. Todavia, a formação de produtos com ingredientes biocompatíveis ainda é pouco explorada, devido à complexidade e a toxicidade de alguns dos ingredientes geralmente utilizados. Nesse contexto, o objetivo geral desse trabalho foi produzir sistemas com diferentes características a partir do estudo do diagrama de fases de sistemas compostos por água, óleo vegetal, surfactante e co-surfactante biocompatíveis, além de um biopolímero gelificante. Na primeira parte deste estudo, a influência da concentração do co-surfactante (etanol) e da insaturação do óleo (óleo de girassol comum ou óleo de girassol alto oléico, HOSO) foi investigada. Os resultados mostraram que, dependendo da composição do meio, foram obtidas diferentes estruturas (microemulsões ou líquidos cristalinos) com distintos comportamentos reológicos. A formação dessas estruturas foi influenciada pela insaturação do óleo e pela concentração de etanol. Na segunda etapa, a substituição do etanol por ácidos orgânicos (acético e propiônico) foi estudada, bem como sua influência no comportamento reológico-estrutural dos sistemas. Nesse caso, a estruturação dos sistemas foi dependente da combinação entre os ingredientes. O óleo de girassol solubilizou maior quantidade de ácido propiônico devido sua maior hidrofobicidade, enquanto o HOSO apresentou mais afinidade com o ácido acético. Essa diferença de afinidades levou a mudanças no mecanismo de difusão do co-surfactante, bem como sua susceptibilidade à partição. A fim de estudar a viabilidade da adição da goma gelana nas microemulsões para obtenção de sistemas gelificados, uma terceira etapa foi realizada com o intuito de avaliar a interação desse polissacarídeo com o surfactante. Foram observados dois comportamentos predominantes, dependendo da concentração dos componentes. Em baixas concentrações de surfactante, a rede de gelana prevaleceu formando géis fortes com claro ponto de ruptura. Com o aumento da concentração, o surfactante começou a se auto-organizar em estruturas mais complexas até que em altas concentrações sua estrutura se tornou predominante com formação de géis fracos. Na última etapa do trabalho, a goma gelana foi adicionada em alguns sistemas do diagrama de fases formulados com HOSO com ou sem ácido acético. Os géis formulados sem ácido acético foram homogêneos e dependentes da razão água/surfactante. A maior quantidade de água levou a géis mais resistentes devido à formação de uma rede de gelana mais densa. Por outro lado, maiores concentrações de surfactante levaram a géis mais fracos e ao aparecimento de uma temperatura de transição relacionada à estruturação do surfactante. A adição de ácido levou à desestabilização da estrutura cristalina, impedindo a estruturação do surfactante. Além disso, ao invés de géis homogêneos, foram formados géis particulados ou microgéis, que foram auto-sustentáveis apenas em altas concentrações de água. Por fim, este trabalho mostrou que sistemas auto-organizados são de particular utilidade na obtenção de produtos com diferentes características tecnológicas, cujas propriedades podem ser moduladas de acordo com a aplicação / Abstract: Self-assembly systems as a way to obtaining products with different characteristics have been studied as an alternative to traditional emulsification and gelation methods. However, the use of biocompatible ingredients in these systems was scarcely explored due to the complexity or toxicity of the most common ingredients. Thus, the aim of this work was to produce systems with different technological characteristics from the study of phase diagrams composed by water, edible oil, surfactant and biocompatible cosurfactants, as well as a gelling biopolymer. In the first part of this work, the influence of the cosurfactant (ethanol) concentration and oil unsaturation (sunflower oil or high oleic sunflower oil, HOSO) was investigated from the phase-diagrams construction. Results showed that depending on the systems composition different structures could be obtained (microemulsion or liquid crystalline) with different rheological behavior. Moreover, the formation of these structures was influenced by the oil unsaturation and ethanol concentration. In the second step, the replacement of ethanol by organic acids (acetic and propionic) was evaluated, as well as their influence on the rheological-structural behavior. In this case, the systems self-assemble was dependent on the ingredients combination. Sunflower oil solubilized a great amount of propionic acid due to its higher hydrophobicity, whereas HOSO presented more affinity with acetic acid. These affinity differences between oil and cosurfactant changed the diffusion mechanism of the acid through the surfactant and oil tails as well as its susceptibility to the partition phenomenon. In order to study the feasibility of gellan gum addition in the microemulsion to obtain gelled systems, a third step was carried out to evaluate the interactions between this polysaccharide and the surfactant. It was observed two prevailing behavior depending on the components concentration. At low surfactant concentration the gellan network prevailed and formed hard gels were formed with clear rupture point. With the surfactant content increase, its moieties started to self-assembly in highly organized structures until that, at high concentration, these structures became predominant with the formation of weak or soft gels. In the last part of this work gellan gum was added to some systems of the phase diagram formulated with HOSO with or without acetic acid. The gels formulated without acetic acid were homogeneous gels and dependent on the water/surfactant ratio. The higher water content led to harder gels due to the formation of a denser gellan network. On the other hand, higher surfactant concentration led to weaker gels and a transition temperature related to the surfactant structuration was observed. The acid acetic addition led to the liquid crystalline destabilization, hindering the surfactant structuration. Moreover, instead of bulky gels, particulate gels or microgels were formed, which were self-supporting only at high water concentration. Finally, this work showed that self-assembly systems are particularly useful to obtain products with different technological characteristics, whose properties can be modulated according to the application / Doutorado / Engenharia de Alimentos / Doutor em Engenharia de Alimentos
142

Formulações em gel para liberação de benzocaína : composição, estabilidade, citotoxicidade e permeação na pele / Gel formulations for the release benzocaine : composition, stability cytotocicity and skin permeation

Sobral, Viviane Roberta Vieira, 1981- 08 August 2012 (has links)
Orientadores: Eneida de Paula, Michelle Franz Montan Braga Leite / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-21T07:56:47Z (GMT). No. of bitstreams: 1 Sobral_VivianeRobertaVieira_M.pdf: 3065834 bytes, checksum: 821d44f8c5c07441498c0b9a0426b822 (MD5) Previous issue date: 2012 / Resumo: Benzocaína (BZC) é um anestésico local do tipo éster usado principalmente em formulações de uso tópico, dérmico ou em mucosas. Em estudos anteriores de nosso laboratório, a interação da BZC com lipossomas convencionais compostos de fosfatidilcolina de ovo, colesterol e alfa-tocoferol foi caracterizada. No entanto, estudos recentes têm demonstrado que lipossomas elásticos, preparados com adição de um tensoativo, apresentam vantagens em relação aos convencionais, pois conseguem atravessar de maneira mais eficiente o estrato córneo. O objetivo deste trabalho foi avaliar e caracterizar, sob o aspecto físico-químico e farmacêutico, diferentes formulações em gel de benzocaína: BZC a 10% e 20%, BZC a 10% encapsulada em lipossomas convencionais (LC) ou lipossomas elásticos (LE) e formulação comercial (contendo BZC a 20%). A quantificação do teor de benzocaína nas formulações foi realizada através de cromatografia líquida de alta eficiência e validada segundo o Guia de Validação de Métodos Analíticos e Bioanalíticos (Brasil, 2003). Em estudos de estabilidade acelerada (Brasil, 2005) foram avaliados: peroxidação lipídica, pH, teor e comportamento reológico das formulações. As formulações recém-preparadas foram avaliadas também quanto à citotoxicidade, liberação e permeação in vitro. Todas as formulações mostraram-se estáveis por até 6 meses, com pequenas variações de pH e teor; a peroxidação lipídica aumentou ao final deste período, porém a quantidade de peróxidos formados não ultrapassou 1% do total de lipídios presentes na formulação.... Observação: O resumo, na íntegra, poderá ser visualizado no texto completo da tese digital / Abstract: Benzocaine (BZC) is an ester type local anesthetic mainly used in topical formulations for either dermal or mucosa. In previous studies from our laboratory, the interaction of BZC with conventional liposomes composed of egg phosphatidylcholine, cholesterol and alpha-tocopherol was characterized. However, recent studies have demonstrated that elastic liposomes prepared with the addition of a surfactant, show advantages over conventional vesicles, as they can effectively cross the stratum corneum. The objective of this study was to evaluate and characterize the physicochemical and pharmaceutical aspects of different gel formulations of BZC: 10% and 20% of BZC, 10% BZC encapsulated into conventional (CL) or elastic liposomes (EL) and commercial formulation (containing 20% BZC). The quantification of BZC in the formulations was performed by high performance liquid chromatography (HPLC) and validated according to the Guide for Validation of Analytical and Bioanalytical Methods (Brazil, 2003). Accelerated stability studies (Brazil, 2005) were used to evaluate lipid peroxidation, pH, and rheological behavior of the formulations. The freshly prepared formulations were submitted to cytotoxicity and in vitro release tests. All formulations were stable up to 6 months, with minor variations in pH and content of BZC; although the lipid peroxidation increased at the end of that period, the amount of peroxides produced was less than 1% of the total lipids in the formulation. ... Note: The complete abstract is available with the full electronic digital thesis or dissertations / Mestrado / Bioquimica / Mestre em Biologia Funcional e Molecular
143

Integrated motions of light driven molecular motors at macroscopic scale / Mouvements macroscopiques intégrés de moteurs moléculaires activés par la lumière

Li, Quan 03 February 2015 (has links)
Dans la nature, des moteurs moléculaires tells que l'ATP synthase ou la kinésine peuvent consommer de l'énergie pour générer du mouvement et ainsi assurer des fonctions essentielles comme le transport ou la synthèse de molécules. La préparation de moteurs artificiels capables de fournir un travail à différentes échelles est un défi important pour les chimistes. Dans ce travail, nous avons conçu et synthétisé de manière stéréosélective un moteur moléculaire unidirectionnel et hautement fonctionnalisé à l'échelle du gramme. La fonctionnalisation orthogonale du moteur permet de l'intégrer dans des matériaux polymères. Grâce à une réaction de "click" réalisée sous différentes conditions de dilution, nous avons pu obtenir soit une macromolécule bicyclique en forme de 8 soit un gel de polymers dont les moteurs constituent les points de réticulation. Sous irradiation UV, les moteurs tournent ce qui enroule les chaines de polymers. Pour le bicycle, la taille caractéristique de la macromolécule diminue tandis que la morphologie évolue vers une pelote étirée. Dans le cas du gel, suite à la rotation des moteurs, l'enroulement des chaines conduit à une contraction du gel de l'ordre de 80% en volume. C'est le premier exemple d'intégration de mouvements moléculaires hors équilibre résultant en une réponse observable à l'échelle macroscopique. Ce travail ouvre des perspectives intéressantes dans le domaine des nanotechnologies ainsi que dans celui de l'énergie. / Natural molecular motors such as ATP synthase, myosin, kinesin and dynein can convert conformationalchanges, due to chemical energy input, into directed motion for catalysis and transport. Preparing artificial molecular motors and making them work at different scales (from nano to macroscopic scale) have been long-term challenges. Herein we designed and synthesized a light driven rotary molecular motor in highly enantiopure form and in gram scale. This motor is featured by two orthogonal functionalities on its upper and lower part, allowing its further integration into polymeric materials. By performing click reaction under different concentration conditions, either an eight shaped motor-polymer conjugate or a gel containing motors as reticulation units could be obtained. Upon UV irradiation, the polymer chains could be entangled due to the rotation of this motor. For eight shaped polymer, the dimension was changed towards smaller dimension, and the morphology was changed from cycle to collapsed coils (spherical or more elongated). For the gel, due to the twisting of polymer chains induced by the rotation of the motor, it could be contracted significantly (80 %) compared with its original volume. The integration of machines which display motions out of equilibrium at nanoscale to movement in the macroscopic world which is extensively used in natural systems will open very interesting prospects in nanotechnology for further developments.
144

Supramolecular Gels : Organogels, Aerogels And Tunable, Multi-color, Luminescent Hydrogels

Banerjee, Supratim 04 1900 (has links) (PDF)
Chapter 1: Supramolecular gels and their applications Gels are viscoelastic materials composed of a solid-like three dimensional fibrillar network that is embedded in a liquid. Supramolecular gels belong to a class of gels which are derived from low molecular weight compounds (typically < 1000). A variety of non-covalent interactions like H-bonding, π-π stacking, donor-acceptor, metal coordination, solvophobic and van der Waals interactions are involved in the formation of the self-assembled fibrous networks (SAFIN’s) in these gels. These non-covalent interactions are weak in nature and as a result, these gels can be reverted back to sol by heating and this process is reversible. These gels are further classified as hydrogels, organogels and aero/xerogels depending on the medium they encompass. Although low molecular weight gelators were known in the early part of the 20th century, it is only in the last two decades that this field has generated widespread interest among scientists. In the 90s, the investigations on these kinds of gels mainly focused on designing new gelator molecules. However, during the last decade, the research interest in this field has shifted more towards designing functional gels. Such gels Scheme 1. Various applications of functional supramolecular gels have been extensively utilized in the templated synthesis of inorganic nanomaterials, in making hybrid materials, as synthetic light harvesting systems, as sensors, in the field of biomaterials such as drug delivery, screening of enzyme inhibitors and tissue engineering and also in the field of organic optoelectronics. In this chapter a few selected examples from each of these fields are highlighted. Chapter 2: Charge transfer induced organogels from 2,3dialkoxyanthracenes and 2,4,7-trinitrofluorenone 2,3-Di-n-alkoxyanthracenes formed charge transfer (CT) interaction promoted organogels in the presence of electron acceptor 2,4,7-trinitrofluorenone (TNF). These dialkoxyanthracences (in the absence of TNF) have been reported previously to form gels in a variety of organic solvents. The gelation property was found to be dependent on the chain length and the derivatives with C6-C16 chains were found to be gelators. On the other hand derivatives with C5-C1 chains were found to be non-gelators. It was found that TNF not only modulated the gelation property of the efficient organogelators, it also transformed the weak and non-gelators into efficient gelators. This charge transfer induced gelation was observed for the derivatives with C10-C4 chains in alcoholic and hydrocarbon solvents whereas the shorter chain derivatives C3-C1 did not form gels. Several other alkoxy and dialkoxy derivatives with substituents in other positions did not show gelation in the presence of TNF. These results suggested that two structural aspects are necessary for these derivatives to form CT gels- the alkoxy chain length and the position of the alkoxy substituents. The thermal stability of all these gels was found to be maximum with a 1:1 stoichiometry of the donor and the acceptor. The common observation, the intensification of color in going from the sol to the gel phase, supported the crucial role of the charge transfer interaction behind the formation of these gels. The rheological characterization of the gels demonstrated that they Figure 1. Chemical structures of 2,3-dialkoxyanthracenes and TNF (middle) and a fluorescence confocal microscopy image (left) and a photograph (right) of DDOA-TNF gel. behaved like viscoelastic soft solids. Chapter 3: A new class of perfluorinated derivatives of bile acids: Synthesis and gelation properties A new class of bile acid based gelators was designed by connecting the side chains of the facially amphiphilic bile acid with perfluoroalkyl chains of different lengths through two different ester linkages-–O-(CO)-and –(CO)-OCH2-. All these three structural aspects i.e. the bile acid moiety, the fluoroalkyl chain length and the spacer were found to influence the gelation properties of the derivatives. Depending on them, there was a variation in terms of the nature of the solvent gelated, the CGCs, the mechanical properties of the gels, etc among the derivatives. The deoxycholic and lithocholic derivatives with the spacer –O-(CO)-formed gels in aromatic hydrocarbons and also in DMSO depending on the fluoroalkyl chain length. The mechanical properties of the gels formed in DMSO were found to be dependent on the bile acid moiety and the fluoroalkyl chain length. In general, the deoxy analogues showed higher elasticity, stiffness and yield stress values for their gels than the litho derivatives. The perfluorinated derivatives having the spacer –(CO)-OCH2-showed gelation properties in organic-aqueous media and in DMSO. Interestingly, organogelation was observed in the deoxy and lithocholic derivatives from both spacer series whereas in the literature most of the bile acid based organogelators are derived from cholic acid. (b) (c) Figure 2. (a) Perfluorinated derivatives of bile acids, (b) photographs of a few DMSO gels and (c) TEM image of a xerogel of a deoxy derivative Chapter 4: Composite aerogels and organogels from 2,3didecyloxyanthracene and bile-perfluoro derivatives Aerogels are unique materials among solids. They have extremely low densities (up to 95% of their volume is air), large pores and high inner surface area. As a result aerogels have very interesting physical properties such as extremely low thermal conductivity, low sound velocity and high optical transparency. There are only a few reports of aerogel formation by low molecular weight gelators. We have investigated the aerogel formation ability of three long 7 chain perfluoroalkyl esters (two deoxycholic and one lithocholic derivative, chart 1) in supercritical CO2. A deoxy derivative, formed aerogel in sc-CO2. When mixed with DDOA (which has been reported previously to form good aerogels in sc-CO2), the perfluoro compound formed aerogels of better quality. The mixed aerogels were characterized by the presence of very large fibers in the micron range (as observed in the aerogel formed by only the fluoro derivative) as well as fibers of smaller size observed in pure DDOA aerogel. We also investigated the behavior of the composite systems in organic solvents. It was found that in DMSO, another deoxy derivative, Figure 3. SEM images of a mixed aerogel of DDOA-DC23C13F27 (left) and a mixed organogel (DMSO) of DDOA-DC23C11F23 (right). DC23C11F23 formed gels with higher thermal stability and improved mechanical properties compared to the native gels of the perfluoro compound or DDOA. Chapter 5: Hydrogels from lanthanide(III) cholates: Tunable, multiple color luminescence from hydrogels and xerogels In this chapter, facile hydrogel formation by several lanthanide cholates is reported. When sodium cholate was added to aqueous solutions of Nd(III), Sm(III), Eu(III), Gd(III), Tb(III), Dy(III), Ho(III), Er(III), Tm(III) and Yb(III) and sonicated, the mixtures formed gels within a few seconds. The gels thus obtained were transparent/translucent and thermoirreversible. Rheological measurements showed that all of them could be classified as viscoelastic soft solids. A naphthalene derivative, 2,3-dihyroxynaphthalene was found to sensitize Tb(III) emission very efficiently in its cholate gel when doped in micromolar concentrations. The importance of the gel matrix behind sensitization of Tb(III) was demonstrated by the inefficiency of the same sensitizer DHN in an SDS micellar solution. In mixed gels of Tb(III)-Eu(III) doped with DHN, a energy transfer pathway was found to occur from the sensitized Tb(III) to Eu(III). By a simple tuning of the ratio of these two lanthanide ions, multiple color emissive gels could be made.The emissive properties of the hydrogels were retained in the xerogels and the suspensions of these xerogels in n-hexane were used for making luminescent coatings on glass surface. Figure 4. Tunable, multi-color luminescent hydrogels and xerogels of lanthanide cholates
145

Preparação e caracterização de membranas obtidas a partir de blendas de fibroína de seda e poli(álcool vinílico) / Preparation and characterization of membranes obtained by silk fibroin and poly(vinyl alcohol)

Marcelo Henrique Kravicz 10 June 2013 (has links)
A fibroína da seda (SF) é uma proteína fibrosa, com caráter hidrofóbico, produzida pelo bicho-da-seda (Bombyx mori L.), cuja produção e armazenamento ocorre em glândulas especializadas antes do processo de fiação em fibras. Recentemente, soluções de fibroína de seda regenerada (RSF) têm sido utilizadas para formar diferentes materiais tais como géis, membranas, filmes e esponjas, para aplicações médicas (Medicina Regenerativa) e em sistemas de liberação de fármacos. Neste trabalho, procuramos estudar o comportamento da solução RSF 2% com adição de 0,25, 0,5 e 1% de PVA (polímero sintético e hidrofílico) por meio de ensaios de reologia dos géis obtidos (SF:PVA), e caracterização das membranas obtidas por meio da secagem em moldes dos géis. Os ensaios de reologia mostraram uma inversão de módulos, com transição de caráter elástico (G\') para viscoso (G\") para SF1 a 3%, entre 230 e 900% de deformação (\'gama\'); transição de caráter viscoso para elástico para as blendas SF:PVA 0,5 e 1% em ensaio de frequência (\'ômega\'). Com o aumento de temperatura, todas as blendas mantiveram seus comportamentos elástico (SF:PVA 0,25%) e viscoso (SF:PVA 0,5 e 1%) até 49 - 51°C, com transição líquido-gel; o aumento dos módulos G\' e G\"com o resfriamento das amostras ocorreu em todas as blendas. As membranas obtidas das blendas SF:PVA tiveram maior absorção de tampão fosfato salino (PBS) após 5 min de ensaio, no qual a blenda SF:PVA apresentou maiores valores de absorção. A caracterização das membranas por FT-IR ATR e DRX mostrou que ocorreu uma transição de conformação aleatória e hélice \'alfa\' para folha \'beta\', para todas as membranas, indicando que a adição do PVA nas blendas promoveu transições silk I para silk II. Deslocamentos de modo vibracional de 1.637/cm (amida I) para 1.616/cm (amida I) com modo centrado em 1.512/cm (amida II) foram vistos em todas as blendas no FT-IR ATR, e difratogramas apresentaram picos característicos às estruturas silk I (2\'teta\' = 10,12º, 2\'teta\' = 12,2° e 2\'teta\' = 28,2º) e silk II (2\'teta\' = 20 - 21 °1). TGA e DSC mostraram uma interação entre as cadeias de RSF c PVA, pela presença de uma temperatura única ele transição vítrea (Tg) entre RSF e PVA. Imagens AFM das blendas mostraram a presença de estruturas nanofibrilares, em formato de ilhas compactas e ramos, confirmando a transição da fase amorfa de SF 2% para hélice \'alfa\' e folha \'beta\', com a adição do PVA. / Silk fibroin (SF) is a fibrous hydrophobic protein produced by silkworms (Bombyx mori L.), which production and storage occur into specialized glands previously fiber formation. Lately, regenerated silk fibroin (RSF) solutions have been used to produce different materials such as gels, membranes, films and sponges, for medical applications and drug delivery systems. In this study, the RSF with 0.25, 0.5 anel 1% PVA (synthetic and hydrophilic polymer) blends were characterized by rheological tests of the gels (SF:PVA), also membranes produced by casting process were characterized as well. Rheological tests showed moduli inversion with elastic to viscous behavior transition for SF 1 to 3%, between 230 anel 900% of strain (\'gama\'); a transition fram viscous to elastic behavior to SF:PVA 0.5 to 1% blends into frequency sweep tests was observed. With the temperature increment, all blends have kept their viscous anel elastic behavior until 49 - 51°C, and a liquid-gel transition occurred in the SF:PVA 0.5 and 1% blends, as well as all moduli have increased with the cooling stage of the samples. All membranes had the highest buffer absorption after 5 min of test, in which SF:PVA 0.5% blend presented high absorption values. FT-IR spectra and XRD diffractograms showed a transition from random and \'alfa\'-helix to \'beta\'-sheet, for all blends, indicating that PVA addition promotes silk I to silk II transition. Modal shifts were observed from 1.637/cm (amide I) to 1.616/cm (amide I) with a central mode in 1.512/cm (amide II) in all blends in the FT-IR ATR spectra. XRD diffractograms showed characteristic peaks of silk I structures (2\'teta\' = 10,12°, 2\'teta\' = 12,2° e 2\'teta\' = 28,2°) and silk II structures (2\'teta\' = 20 - 21 °1). TGA and DSC studies showed the possibility of interaction between SF and PVA chains by acquirement of mobility at once, at an intermediate temperature between SF anel PVA glass transition (Tg). AFM images exhibited different phases for all membranes, with the presence of nanofibers, wires, rods and branch islands, suggesting the formation of more organized structures, such as and \'alfa\'-helix and \'beta\'-sheet, with PVA addition.
146

Vliv reaktivity na transport kovových iontů v huminových gelech / Influence of reactivity on transport of metal ions in humic gels

Smitalová, Michaela January 2013 (has links)
This diploma thesis deals with copper(II) ions diffusion in the humic hydrogels. The hydrogels were prepared from several samples of humic acids using different method and their isolation conditions from the original matrix. A selective blocking of functional groups (COOH, OH) was performed in the selected samples of humic acids. These reactive groups were selectively blocked using methylation agent trimethylsilyl-diazomethane. The success of performed methylation and functional groups blocking was verified using a FT-IR spectroscopy. There was carried out the set of diffusion experiments. The experimental arrangement was selected to enable an instantaneous planar source met-hod for data processing. The basis of this method was to determine the copper(II) ions con-centration distribution in the hydrogels. The method consists of slicing of the hydrogels after the diffusion experiments, extraction of the copper ions in the solution and determina-tion of concentration in the extracts from individual slices using UV-VIS spectroscopy. Based on the experimental data the effective diffusion coefficients were determined. The resulting values include both the effect of hydrogels structure and the effect of the reaction between Cu(II) ions and humic acids. There were prepared gels with defined portion of blocked functional groups for selected samples, which allowed to investigate the effect of reactivity on the copper ions diffusion without the significant changes in the gel structure (porosity). The blocking of functional groups reflected in a lower values of diffusion coefficients in comparison to the gels prepared from unmodified humic acids as follows. There was also confirmed the effect of humic acids isolation procedure and their properties on the diffusivity.
147

Termocitlivé polymerní gely / Thermosensitive polymer gels

Pelánová, Markéta January 2017 (has links)
The presented thesis on thermosensitive polymer gel is focused especially on a thermosensitive triblock copolymer, which is composed of hydrophobic polylactide, polyglycolid and hydrophilic polyethylene glycol (PLGA-PEG-PLGA). Thermosensitive copolymers are very attractive for their phase sol-gel transitions and gel-suspension transitions. The aqueous solution of this copolymer behaves like a sol at laboratory temperature and like a gel at body temperature. These systems are used as injectable carriers for targeted drug delivery with controlled release. However, the influence of the resulting polymer concentration and temperature on the thermosensitive hydrogel nanostructure was not yet fully studied. In the experimental part, the viscoelastic behavior of hydrogels was observed by dynamic rheological analysis at different polymer concentrations and temperature conditions. The average size and distribution of micelles of triblock copolymer in aqueous solution were measured using dynamic light scattering technique. Characterization of fibrous micelles was complemented by imaging technique, cryogenic transmission electron microscopy.
148

Studium biologické aktivity superabsorpčních polymerů / Study of biological activity of superabsorption polymers

Männlová, Adriana January 2017 (has links)
This thesis is focused on the study of the biological activity of superabsorbent polymers for environmental and agricultural applications. Generally these hydrogels perform many functions in the soil, which is increasingly stressed by treatment with synthetic fertilizers and thus loses their natural properties, such as the uptake of moisture. Addressing these issues is now in superabsorbent polymers that can absorb and also retain a lot of water around the root system as long as possible. They can perform the function of carriers gradual release fertilizer. Based on the literature review was designed and conducted the study of biological activity in the soil model on corn sown. SAPs were prepared in the framework of contract research Faculty of Chemistry of the Technical University in Brno with the company Amagro Ltd. The content of the experiment, the superabsorbent polymer, observing effects on the growth of dent corn. He was also studied root system for absorption of nutrients. Further changes were observed rheological properties of prepared superabsorbent polymer, superabsorbent polymers since they provide a source of nutrients and help to retain moisture in the soil, it is necessary to know their viskoelstick properties even at temperatures below freezing. This work is based primarily on the use of great motivation superabsorbent polymers in agriculture and also in environmental protection.
149

Synthesis and Properties of the Metallo-Supramolecular Polymer Hydrogel Poly[methyl vinyl ether-alt-mono-sodium maleate]∙AgNO3

Al-Dossary, Mona S. 05 1900 (has links)
Gels are a special class of materials which are composed of 3D networks of crosslinked polymer chains that encapsulate liquid/air in the matrix. They can be classified into organogels or hydrogels (organic solvent for organogel and water for hydrogel). For hydrogels that contain metallic elements in the form of ions, the term of metallo-supramolecular polymer hydrogel (MSPHG) is often used. The aim of this project is to develop a kind of new MSPHG and investigate its properties and possible applications. The commercial polymeric anhydride poly(methyl vinyl ether-alt-maleic anhydride) (PVM/MA) is converted by reaction with NaOH to give poly(methyl vinyl ether-alt-monosodium maleate) (PVM/Na-MA). By addition of AgNO3-solution, the formation of the silver(I) supramolecular polymer hydrogel poly[methyl vinyl ether-alt-mono-sodium maleate]∙AgNO3 is obtained. Freeze-dried samples of the hydrogel show a mesoporous network of polycarboxylate ligands that are crosslinked by silver(I) cations. The supercritical CO2 dried silver(I) hydrogel was characterized by FT-IR, SEM-EDAX, TEM, TGA and Physical adsorption (BET) measurements. The intact silver(I) hydrogel was characterized by cryo-SEM. In the intact hydrogel, ion-exchange studies are reported and it is shown that Ag+ ions can be exchanged by copper(II) cations without disintegration of the hydrogel. The silver(I) hydrogel shows effective antibacterial activity and potential application as burn wound dressing.
150

An Investigation on Compressive Mechanical Properties of Syndiotactic Polystyrene Gels and the Conductive Behavior of Syndiotactic Polystyrene Ionogels

Ariza, Nathan Robert, Ariza January 2018 (has links)
No description available.

Page generated in 0.0307 seconds