• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 232
  • 89
  • 44
  • 22
  • 20
  • 7
  • 5
  • 1
  • 1
  • Tagged with
  • 557
  • 557
  • 132
  • 95
  • 91
  • 88
  • 85
  • 75
  • 69
  • 59
  • 52
  • 50
  • 47
  • 43
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Transcriptional Upregulation of Breast Cancer Resistance Protein by 17β-Estradiol in ERα-Positive MCF-7 Breast Cancer Cells

Zhang, Yuhua, Zhou, Gengyin, Wang, Huaiping, Zhang, Xiaofang, Wei, Fulan, Cai, Yongping, Yin, Deling 01 October 2007 (has links)
Objectives: Breast cancer resistance protein (BCRP) confers resistance to certain anticancer drugs such as mitoxantrone, topotecan and SN-38. A putative estrogen response element (ERE) was located in the promoter region of the BCRP gene. The present study aimed to investigate whether human BCRP expression is regulated pretranscriptionally by 17β-estradiol. Methods: Two recombinant plasmids (pcDNA3-promoter-BCRP and pcDNA3-CMV-BCRP) were designed to express the full-length BCRP cDNA enforced driven by its endogenous promoter containing a functional ERE and a control constitutive cytomegalovirus (CMV) promoter, respectively, which were transfected into estrogen receptor α (ERα)-positive MCF-7 and ERα-negative MDA-MB-231 breast cancer cell lines. Results: 17β-Estradiol significantly upregulated BCRP mRNA and protein expression in a dose-dependent manner, and the effect was abolished by the antiestrogen tamoxifen. Furthermore, electrophoretic mobility shift assays demonstrated that the putative ERE in the promoter region of the BCRP gene and ERα are essential for transcriptional activation of BCRP by 17β-estradiol. Conclusions: Taken together, our findings indicate that BCRP expression is upregulated by 17β-estradiol via a novel pretranscriptional mechanism which might be involved in 17β-estradiol-ER complexes binding to the ERE of BCRP promoter via the classical pathway to activate transcription of the BCRP gene.
122

The Role of Cdx in Mesoderm Cell Fate Specification

Foley, Tanya 24 January 2022 (has links)
Roles for the Cdx transcription factors during anteroposterior patterning and development of the posterior embryo have been well described, yet little is known about Cdx functions during mesoderm specification. In the studies presented here, novel roles for Cdx during gastrulation are presented. In the first of two studies, the role of Cdx factors during cardiac mesoderm specification is investigated. We demonstrate that Cdx factors epigenetically restrict cardiac progenitor specification, preventing the ectopic expression of cardiogenic genes within progenitor mesodermal populations. We provide evidence to suggest that this occurs through interaction with Brg1, a subunit of the SWI/SNF chromatin remodeling complex, and propose a molecular mechanism by which Cdx-mediated recruitment of the SWI/SNF complex is required to maintain repression of cardiac targets at developmental stages where Cdx transcription factors are no longer expressed. Following this, Cdx-dependent gene expression programs were identified in the extra-embryonic yolk sac. RNA-sequencing of Cdx-mutant yolk sacs revealed novel Cdx-dependent gene targets involved in ion and nutrient transport, functions analogous to those previously described for Cdx in the adult intestinal epithelium. Subsequent experimentation revealed that, for a subset of these targets, regulation correlates with the maintenance of H3K27me3 marks. Finally, we provide evidence to suggest Cdx-dependent H3K27me3 marks are established at early developmental stages, when yolk sac progenitors are specified from the streak. Together, these studies describe novel roles for Cdx factors in mesoderm specification during gastrulation, and evoke molecular mechanisms by which Cdx might program early mesodermal populations for gene expression at later developmental stages through interactions with epigenetic regulatory complexes.
123

Integrative Computational Genomics Based Approaches to Uncover the Tissue-Specific Regulatory Networks in Development and Disease

Srivastava, Rajneesh 03 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Regulatory protein families such as transcription factors (TFs) and RNA Binding Proteins (RBPs) are increasingly being appreciated for their role in regulating the respective targeted genomic/transcriptomic elements resulting in dynamic transcriptional (TRNs) and post-transcriptional regulatory networks (PTRNs) in higher eukaryotes. The mechanistic understanding of these two regulatory network types require a high resolution tissue-specific functional annotation of both the proteins as well as their target sites. This dissertation addresses the need to uncover the tissue-specific regulatory networks in development and disease. This work establishes multiple computational genomics based approaches to further enhance our understanding of regulatory circuits and decipher the associated mechanisms at several layers of biological processes. This study potentially contributes to the research community by providing valuable resources including novel methods, web interfaces and software which transforms our ability to build high-quality regulatory binding maps of RBPs and TFs in a tissue specific manner using multi-omics datasets. The study deciphered the broad spectrum of temporal and evolutionary dynamics of the transcriptome and their regulation at transcriptional and post transcriptional levels. It also advances our ability to functionally annotate hundreds of RBPs and their RNA binding sites across tissues in the human genome which help in decoding the role of RBPs in the context of disease phenotype, networks, and pathways. The approaches developed in this dissertation is scalable and adaptable to further investigate the tissue specific regulators in any biological systems. Overall, this study contributes towards accelerating the progress in molecular diagnostics and drug target identification using regulatory network analysis method in disease and pathophysiology.
124

A Stem-Loop Secondary Structure Influencing Expression Of The Post-Transcriptional Regulator, RsmA, In Pseudomonas aeruginosa

Miller, Ian, Pritchett, Christopher 04 April 2018 (has links)
Pseudomonas aeruginosa is an infectious Gram-negative bacillus that is found in environments ranging from aerobic to anaerobic, soil to water, plant tissues to human tissues, and even found thriving on plastics and medical implant devices. P. aeruginosa is a major concern for individuals who have cystic fibrosis, chronic obstructive pulmonary disorder, diabetes, have recently undergone surgery, have recently experienced severe burns, or have experienced other ailments that resulted in a compromised immune system, such as Human Immunodeficiency Virus (HIV). P. aeruginosa evades the host immune response by expressing a myriad of virulence factors, and it is through stringent gene regulation of virulence factors that allow P. aeruginosa to initiate acute infections and persist as a chronic infection of its host. The expression of virulence factors is controlled by a complex regulatory system comprised of Two-Component Systems (TCS), post-transcriptional regulators, small non-coding RNAs (sRNA), and others. A significant post-transcriptional regulator involved in this regulatory network is the Regulator of Secondary Metabolites (RsmA). RsmA belongs to the CsrA family of mRNA binding proteins found in many Gram-negative bacteria. Much is known about the targets of RsmA and its functions; however, little is known about how RsmA itself is regulated. Leader sequences, 5’ and 3’, have been demonstrated to have regulatory roles. Using bioinformatics, we have observed potential for the formation of a stem-loop secondary structure in the 5’ leader sequence of rsmA. We propose that this stem-loop plays an important role in the expression of RsmA in P. aeruginosa. In this study, we constructed rsmA leader fusions using the lacUV5 promoter and lacZ reporter to measure translation with and without the secondary structure present. Secondly, we introduced point mutations in the stem of the stem-loop of the leader fusions to disrupt the formation of the stem-loop. Finally, we performed Site-Directed Mutagenesis on the rsmA leader to examine protein levels in vivo via western blot analysis using an HA-tagged rsmA. Our data shows that when the stem-loop formation is disrupted or deleted, translation of RsmA increases. This data suggests that the stem-loop provides a regulatory function in the expression of RsmA.
125

Molecular mechanisms that underlie non-Mendelian inheritance patterns in <i>Zea mays</i>

Deans, Natalie Christine January 2020 (has links)
No description available.
126

Engineering biological networks using cooperative transcriptional assembly

Patel, Nikit 22 October 2018 (has links)
Eukaryotic genes are often regulated by multivalent transcription factor (TF) complexes. Through the process of cooperative self-assembly, these complexes carry out non-linear regulatory operations involved in cellular decision-making and signal processing. In this thesis, we apply this natural design principle to artificial networks, testing whether engineered cooperative TF assemblies can be used to program non-linear synthetic circuit behavior in yeast. Using a model-guided approach, we show that specifying strength and number of interactions in an assembly enables predictive tuning between regimes of linear and non-linear regulatory response for single- and multi-input circuits. We demonstrate that synthetic assemblies can be adjusted to control circuit dynamics, shaping the timing of activation. We harness this capability to engineer circuits that perform dynamic filtering, enabling frequency-dependent decoding in cell populations. Thru this work, we find that cooperative assembly provides a versatile way to tune nonlinearity of network connections, dramatically expanding the range engineerable behaviors available to synthetic circuits. We then extend our modeling-framework to predict genome-wide binding of our TF assemblies and find that cooperative complexes made of weakly-interacting proteins can reduce unintended activation of endogenous genes. Thus, we are able to introduce synthetic regulatory components with low fitness costs on the cell, ensuring long-term stability of our integrated circuits over time. Taken together, this dissertation outlines a synthetic framework for building cooperative transcriptional complexes in vivo in order to engineer complex regulatory behaviors that are functionally orthogonal to the host cell. / 2019-10-22T00:00:00Z
127

Investigation of Chemotaxis Genes and Their Functions in Geobacter Species

Tran, Hoa T. 01 September 2009 (has links)
Geobacter species are δ-Proteobacteria and are often predominant in the Fe(III) reduction zone of sedimentary environments. Their abilities to remediate contaminated environments and to produce electricity have inspired extensive studies. Cell motility, biofilm formation, and type IV pili, which have been shown to be regulated by chemotaxis genes in other bacteria, all appear important for the growth of Geobacter species in changing environments and for electricity production. The genomes of Geobacter species show the presence of a significant number of chemotaxis gene homologs, suggesting important roles for them in the physiology of Geobacter species, although gene functions are not yet identified. In this study, we focus on identifying chemotaxis components and studying their functions in Geobacter species. We identified a large number of homologs of chemotaxis genes, which are arranged in six or more major clusters in the genomes of Geobacter sulfurreducens, Geobacter metallireducens, and Geobacter uraniireducens. Based on homology to known pathways, functions of some chemotaxis clusters were assigned; others appear to be unique to Geobacter species. We discuss the diversity of chemoreceptors and other signaling proteins as well the regulation of chemotaxis genes in Geobacter species. The functions of chemotaxis genes were studied in G. sulfurreducens, whose genome contains ~ 70 chemotaxis gene homologs, arranged in 6 major clusters. These chemotaxis clusters are also found in other Geobacter species with similar gene order and high level of gene identity, suggesting that our study in G. sulfurreducens could be extrapolated to other Geobacter species. We identified the function of the che5 cluster of G. sulfureducens as regulation of the biosynthesis of extracellular materials. We showed that G. sulfurreducens KN400 is chemotactic, and that this behavior is flagellumdependent. Our preliminary data indicated that G. sulfurreducens may use the che1 cluster, which is found exclusively in Geobacteraceae, to regulate chemotaxis. Our studies demonstrated important roles of chemotaxis genes in Geobacter physiology and their presence in large numbers could be one of the reasons why Geobacter species outcompete other species in bioremediation sites. Further studies are warranted for better understanding of the mechanisms of Che-like pathways and their potential use in optimization of conditions for applications of Geobacter species in bioremediation and electricity generation.
128

Synthesis and Evaluation of the Pyrrole-Imidazole Polyamides for Cancer Treatment / がん治療を目指したピロール-イミダゾールポリアミドの合成と評価

Maeda, Rina 23 March 2021 (has links)
学位プログラム名: 京都大学大学院思修館 / 京都大学 / 新制・課程博士 / 博士(総合学術) / 甲第23345号 / 総総博第18号 / 新制||総総||3(附属図書館) / 京都大学大学院総合生存学館総合生存学専攻 / (主査)教授 山敷 庸亮, 教授 杉山 弘, 教授 積山 薫 / 学位規則第4条第1項該当 / Doctor of Philosophy / Kyoto University / DGAM
129

Deciphering the Role of Chromatin Loops in Gene Regulatory Circuits

Zhang, Shanshan 26 May 2023 (has links)
No description available.
130

Identifying modes of zinc-dependent gene regulation in <i>S. pombe</i>

Ehrensberger, Kate M. 30 May 2014 (has links)
No description available.

Page generated in 0.0175 seconds