201 |
Nucleome programming is required for the foundation of totipotency in mammalian germline development / Nucleomeプログラミング は哺乳類生殖細胞系譜における分化全能性の基盤構築に必須であるNagano, Masahiro 24 July 2023 (has links)
京都大学 / 新制・論文博士 / 博士(医学) / 乙第13566号 / 論医博第2293号 / 新制||医||1068(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 柊, 卓志, 教授 篠原, 隆司, 教授 後藤, 慎平 / 学位規則第4条第2項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
202 |
Genetic control of testicular germ cell tumor susceptibility in miceAnderson, Philip D. 03 August 2009 (has links)
No description available.
|
203 |
A Traveling Niche: The Role of Steel Factor in Mouse Primordial Germ Cell DevelopmentGu, Ying January 2011 (has links)
No description available.
|
204 |
Impact of intestinal microbial composition on the regulation of immunoglobulin ECahenzli, Julia 10 1900 (has links)
<p>We are all born germ-free. Soon after birth, microbes colonize our body’s surfaces, with the intestine housing the highest density of microbes on earth. Most of us remain blissfully unaware of this co-existence because inflammatory responses to the indigenous microbes are normally not triggered. Nonetheless, intestinal microbes are true educators of our immune system, which is exemplified by the immature immune system observed in germ-free animals. Accumulating evidence suggests that microbial exposure and/or composition impacts on immune regulation. As an example, isotype switch to immunoglobulin E (IgE) is normally very tightly regulated such that in healthy individuals and mice, serum levels are maintained at very low levels. In contrast, total serum IgE levels are elevated in germ-free mice, indicating that in the absence of microbes the regulatory pathway that maintains IgE at basal levels is disrupted. We hypothesize that in the absence of stimuli from the resident intestinal bacteria the immune system does not receive adequate educational signals. We showed that in germ-free mice class switch recombination (CSR) to IgE occurred at intestinal mucosal lymphoid sites a few weeks after birth. IgE levels then remained at elevated levels throughout life, even when intestinal bacteria were introduced after weaning. In the first part of this thesis, the mechanisms involved in this hygiene-induced IgE were investigateted. In a second part, the immunoregulatory role of commensal bacteria was extended to a model of autoimmunity.</p> <p>Collectively these results demonstrate a new dimension of the impact of intestinal symbionts on the immune system: they dictate baseline immune system regulation. Elucidating the mechanisms whereby microbes induce immunoregulatory pathways may give insights into the increasing prevalence of allergic- and autoimmune diseases.</p> / Doctor of Philosophy (PhD)
|
205 |
Impact of Commensal Intestinal Microbiota on Nervous System Development and FunctionMcVey, Neufeld Karen-Anne 04 1900 (has links)
<p>Commensal intestinal microbiota number in the realm of 10<sup>14 </sup>organisms per gram of colonic contents. This considerable bacterial load is acquired during birth and in the early postnatal days and has a defining, extensive impact on host physiology. We now have persuasive evidence that the intestinal microbiota influence the development of the nervous system. The following body of work describes alterations in the nervous system of germ free mice – mice bred and maintained with no exposure to bacteria of any kind. Here we examine diverse measures of neural activity, ranging from stress reactivity and stress-associated behaviours, to changes in neurochemistry of brain regions mutually involved in feeding and stress, to electrophysiological measures of sensory cells in the enteric nervous system. We see that in the absence of colonizing microbiota that neural activity is considerably altered both peripherally and centrally. Specifically, germ free mice exhibit a reduction in basal anxiety-like behaviour accompanied by consistent changes in mRNA gene expression of plasticity-related genes in brain tissue, lifelong reduction in circulating plasma leptin, increases in mRNA gene expression of hypothalamic leptin receptors and neuropeptide Y, and decreased excitability in sensory neurons in the myenteric plexus of the enteric nervous system. Furthermore, while it appears that central systems responsible for stress may have an early critical window for bacterial-induced change, it would seem that the peripheral enteric nervous system retains plasticity into adulthood. This novel work provides insight into the microbial-gut-brain axis and suggests potential avenues for therapies aimed at treating the frequently comorbid gastrointestinal and psychiatric illnesses.</p> / Doctor of Philosophy (Medical Science)
|
206 |
Studies of the Class A High-Molecular Weight Penicillin-Binding Proteins in Bacillus subtilisMcPherson, Derrell C. 25 April 2003 (has links)
The survival of all organisms depends on their ability to perform certain enzymatic activities and the ability to construct certain structures. In prokaryotes, enzymes are required for the final reactions of peptidoglycan (PG) synthesis, the structural element of the bacterial cell wall. These proteins, known as penicillin-binding proteins (PBPs), are identified through the presence of conserved motifs within their functional domains. The Class A high-molecular weight PBPs are bifunctional, performing the penicillin-sensitive transpeptidase activity and the glycosyl transferase (GT) activity required for the polymerization of the glycan strands. The Class A PBPs in Bacillus subtilis are PBP1, PBP4, PBP2c, and PBP2d (YwheE) and they are encoded by ponA, pbpD, pbpF, and pbpG (ywhE), respectively. These proteins appear to be somewhat functionally redundant because removal of one or more does not cause any noticeable change in phenotype. However, the loss of PBP1 has previously been demonstrated in B. subtilis to cause a decreased growth rate and changes in morphology of vegetative cells, both of which are increased upon the additional loss of PBP4. Furthermore, the loss of sporulation-expressed Class A PBPs, PBP2c and 2d, causes a 10,000-fold decrease in the production of heat resistant spores. This double mutant is shown to have changes in the structural parameters of cortex PG that appear minor when compared to other strains, but are coupled with a large defect on the deposition of cortex PG, apparently from the synthesis of an abnormal germ cell wall. The Class A PBPs are believed to be the only proteins capable of performing the GT activity and it is therefore believed that cell viability requires the presence of at least one functional Class A PBP. This requirement has been demonstrated in other organisms, but a B. subtilis strain lacking all Class A PBPs is viable. The phenotypical changes seen in the PBP1 mutant are exacerbated in this strain. The GT activity remaining in this strain is sensitive to the antibiotic moenomycin in vitro whereas it appears resistant in vivo. Identification of the protein(s) performing this novel GT activity will rely on the demonstration of the GT activity in vitro. / Ph. D.
|
207 |
Germ fate determinants protect germ precursor cell division by reducing septin and anillin levels at the division planeConnors, Caroline Quinn January 2024 (has links)
Cytokinesis is defined as the physical division of one cell into two and occurs at the end of the cell cycle. Gestation and development are defined by dividing cells; as an organism develops, cells must duplicate their genetic material, divide, and form two daughter cells. This process is fundamental to all life on our planet. Here, I present work that builds upon our understanding of cytokinesis, focusing on the differential requirements for cytokinesis in different cell types in the early C. elegans embryo, specifically, the P2 cell of the 4-cell embryo.
The textbook view of cytokinesis is that all animal cells divide using the same molecular machinery. Yet, growing evidence supports both cell type-specific regulation of cytokinesis and cell type-specific consequences for cytokinesis failure. The 4-cell C. elegans embryo is a powerful model for studying cell type-specific differences in cytokinesis as the cells are already programmed to form distinct cell linages, and previously, we identified cell type-specific regulation of cytokinesis at the 4-cell stage. We weakened the contractile ring using a temperature sensitive (ts) diaphanous formin/CYK-1 mutant. Under this condition, the two anterior cells (ABa and ABp) always failed in cytokinesis, whereas the two posterior cells (EMS and P2) divided successfully at a high frequency, even without detectable F-actin in the cell division plane.
Here we focus on the cell type-specific protection of cytokinesis in the P2 germ precursor cell, required to produce all gametes in the adult worm. Using a candidate-based RNAi mini-screen to identify genes required for protection of P2 cytokinesis in the formin(ts) embryos, we identified members of the CCCH Zn2+-finger protein family that are enriched in P2 and required for proper germ cell fate specification. Depletion of MEX-1, PIE-1, or POS-1 led to loss of cytokinetic protection and P2 cytokinesis failure in formin(ts) mutants, but not in control embryos. While depletion of MEX-1 affected multiple cell types, PIE-1 and POS-1 acted exclusively in the P2 cell.
Further analysis revealed these germ fate regulators protect cytokinesis by preventing excessive accumulation of septin/UNC-59 and its binding partner, anillin/ANI-1, on the cell cortex in the P2 cell division plane, both negative regulators of actomyosin constriction during cytokinesis in many contexts. We further found that co-depletion of septin and PIE-1 was sufficient to both reduce anillin levels at the P2 division plane and restore cytokinetic protection of P2 in formin(ts) mutant embryos. Thus, germ fate specification protects the P2 germ precursor cell from cytokinesis failure upon damage to the actin cytoskeleton at least in part by controlling the levels of septin and anillin at the division plane.
|
208 |
A male germ cell assay and supporting somatic cells: its application for the detection of phase specificity of genotoxins in vitroHabas, Khaled S.A., Brinkworth, Martin H., Anderson, Diana 02 November 2020 (has links)
No / Male germ stem cells are responsible for transmission of genetic information to the next generation. Some chemicals exert a negative impact on male germ cells, either directly, or indirectly affecting them through their action on somatic cells. Ultimately, these effects might inhibit fertility, and may exhibit negative consequences on future offspring. Genotoxic anticancer agents may interact with DNA in germ cells potentially leading to a heritable germline mutation. Experimental information in support of this theory has not always been reproducible and suitable in vivo studies remain limited. Thus, alternative male germ cell tests, which are now able to detect phase specificity of such agents, might be used by regulatory agencies to help evaluate the potential risk of mutation. However, there is an urgent need for such approaches for identification of male reproductive genotoxins since this area has until recently been dependent on in vivo studies. Many factors drive alternative approaches, including the (1) commitment to the principles of the 3R's (Replacement, Reduction, and Refinement), (2) time-consuming nature and high cost of animal experiments, and (3) new opportunities presented by new molecular analytical assays. There is as yet currently no apparent appropriate model of full mammalian spermatogenesis in vitro, under the REACH initiative, where new tests introduced to assess genotoxicity and mutagenicity need to avoid unnecessary testing on animals. Accordingly, a battery of tests used in conjunction with the high throughput STAPUT gravity sedimentation was recently developed for purification of male germ cells to investigate genotoxicity for phase specificity in germ cells. This system might be valuable for the examination of phases previously only available in mammals with large-scale studies of germ cell genotoxicity in vivo. The aim of this review was to focus on this alternative approach and its applications as well as on chemicals of known in vivo phase specificities used during this test system development. / Natural Science Fund of Shandong Province, China (No. ZR2012DM014) and the People’s Livelihoods Science and Technology Project of Qingdao, Shandong Province, China (13-1-3-73-nsh).
|
209 |
Development of an in vitro test system for assessment of male, reproductive toxicity.Habas, Khaled S.A., Anderson, Diana, Brinkworth, Martin H. 2013 October 1928 (has links)
Yes / There is a need for improved reproductive toxicology assays that do not require large numbers of animals but are sensitive and informative. Therefore, Staput velocity-sedimentation separation followed by culture of specific mouse testicular cells was used as such a system. The specificity of separation was assessed using immunocytochemistry to identify spermatids, spermatocytes and spermatogonia. The efficacy of the system to detect toxicity was then evaluated by analysing the effects of hydrogen peroxide (H2O2) by the terminal uridine-deoxynucleotide end-labelling (TUNEL) assay to show the rate of apoptosis induced among the different types of germ cells. We found that 2 h of treatment at both 1 and 10 μM induced increases of over ∼10-fold in the percentage of apoptotic cells (p ≤ 0.001), confirming that testicular germ cells are prone to apoptosis at very low concentrations of H2O2. It was also demonstrated for the first time for this compound that spermatogonia are significantly more susceptible than spermatocytes, which are more affected than spermatids. This reflects the proportion of actively dividing cells in these cell types, suggesting a mechanism for the differential sensitivity. The approach should thus form the basis of a useful test system for reproductive and genetic toxicology in the future.
|
210 |
Germ Cell Responses to Doxorubicin Exposure in VitroHabas, Khaled S.A., Anderson, Diana, Brinkworth, Martin H. 24 November 2016 (has links)
Yes / Anthracyclines such as doxorubicin (Dox), widely used to treat various types of tumours, may result in induced testicular toxicity and oxidative stress. The present investigation was designed to determine whether exposure of isolated and purified mouse germ cells to Dox induces DNA damage in the form of strand breaks (presumably) resulting in apoptosis and to investigate the relative sensitivity of specific cell types. DNA damage was assessed using the Comet assay and the presence of apoptosis was determined by TUNEL assay. Isolated mouse germ cells were treated with different concentrations (0.05, 0.5 and 1 mM, respectively) of Dox, and fixed 1 h after treatment. The incidences of both DNA damage shown by single cell gel-electrophoresis and of apoptosis increased significantly in each specific cell type in a concentration-dependent manner. The DNA damage and apoptosis incidences gradually increased with concentration from 0.05 to 1 mM with Dox. Our results indicate that apoptosis plays a vital role in the induction of germ cell phase-specific toxicity caused by Dox with pre-meiotically and meiotically dividing spermatogonia and spermatocytes respectively as highly susceptible target cells. / Higher Education Funding Council for England (HEFCE)
|
Page generated in 0.0243 seconds