• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 4
  • 3
  • 2
  • Tagged with
  • 16
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Deposition of CIGS absorber layer by gas flow sputtering : Initiation of project

Åsberg, Anders January 2013 (has links)
The photovoltaic solar cell industry is growing rapidly, but high cost per watt is still an obstacle. Thin film solar cells, especially thin film solar cells using CIGS absorbers that have the highest proven efficiency, have the potential to reduce the cost through cheap manufacturing. Academic research concerning CIGS solar cells has so far been focused on cells with absorber layers deposited by co-evaporation, which can be used to make very high efficiency cells but is a deposition process ill suited for large scale production. In this thesis a process for depositing CIGS absorber layers by gas flow sputtering, a deposition technique enabling high rate depositions of low energy particles that is potentially easier to apply to a large scale production, has been outlined. Equipment for CIGS-deposition by gas flow sputtering has been prepared, characteristics of the process have been investigated and ultimately a series of first prototype CIGS absorber layers has been deposited as part of complete solar cells. A lot of focus in this thesis is on the practical work and problem solving around the equipment, e.g. pulsed DC power supplies and electrical connections, heating and heating control in a reactive vacuum environment, and on the basic functionality of the gas flow sputter, how process and film properties like deposition rate, thickness uniformity etc. vary with sputter conditions like pressure, gas flow etc. Following the process design the first prototype series produced crystalline CIGS absorbers of desired elemental composition and thickness but having rather small grain sizes, while the complete cells exhibited solar cell IV-characteristics but very poor efficiencies.
2

The Vertical Route Forecast : an Evaluation of a New Flight Path Based Weather Forecast Product with HARMONIE-AROME High Resolution Forecasts over Scandinavia / Vertikal ruttprognos : En utvärdering av en ny flygvägsbaserad väderprognosprodukt med högupplösta prognoser från HARMONIE-AROME över Skandinavien

Leffler, Ingela January 2017 (has links)
As a complement to existing weather forecast products for aviation, a prototype of a new product is presented and evaluated. It shows the atmosphere in a vertical cross section along the intended route. This Vertical Route Forecast introduces the possibility to examine the vertical distribution of cloud layers, wind, precipitation, turbulence and more along the flight path. Through a market research with 166 participating Swedish pilots it was found that the demand for the product is high and that 90 % of the participants would use it if available. The Vertical Route Forecast is inspired by the existing product GRAMET by Ogimet (Ballester Valor, n.d) but instead of using forecasts from the weather prediction model GFS (Global Forecast System) at 0.5° (56 km) resolution it uses data from the 2.5 km resolution model HARMONIE-AROME. The latter is operational at SMHI (Swedish Meteor-ological and Hydrological Institute) and because of its high resolution it enables more detailed structures of the weather to be presented. The product differs further from GRAMET by showing only the lower parts of the atmosphere so as to be of more use to small aircraft pilots flying at low levels. To assess the accuracy of the forecasts, a model evaluation of HARMONIE-AROME has been conducted through a case study in which the model was verified and compared to GFS over Sweden. The two models were verified against their own analyses at four different atmospheric pressure levels in terms of bias, root mean square error, standard deviation and correlation. HARMONIE-AROME performed best for temperature while GFS had the best forecasts of relative humidity. Wind speed and direction were also evaluated with insignificantly better results for GFS. However, the weather did not vary very much during the study as the two weeks were dominated by high pressure systems. Other evaluations made of HARMONIE-AROME by e.g. the HIRLAM consortium (2016a) have shown good or adequate performance of the model. It was concluded that HARMONIE-AROME would be well suited as the forecast producing model for this Vertical Route Forecast. / För att piloter ska kunna planera en säker flygning behöver de tillgång till bra och användbara väderprognoser. Med de prognosprodukter som finns tillgängliga idag kan det dock vara svårt att få en detaljerad uppfattning om hur vädret kommer vara längs med vägen. Här presenteras och utvärderas därför ett förslag till en ny prognosprodukt som visar atmosfären i en sidovy längs en valfri sträcka. Med den kan piloten granska utbredningen av bland annat molntäcken, vind, nederbörd och turbulens i höjdled längs den planerade färdvägen. Denna vertikala ruttprognos är inspirerad av den redan befintliga produkten GRAMET från Ogimet (Ballester Valor, n.d) men visar mer detaljerade prognoser som är bättre anpassade till flygningar på låga höjder. Vid en marknadsundersökning utförd med 166 medverkande svenska piloter stod det klart att efterfrågan på produkten är hög och 90 % av de medverkande påstod att de skulle använda den om den fanns tillgänglig. För att bedöma prognosernas precision har en utvärdering gjorts av den prognosmodell som använts till produkten. Modellen används annars hos SMHI (Sveriges Meteorologiska och Hydrologiska Institut) och kallas HARMONIE-AROME. I en fallstudie jämfördes den med modellen GFS som skapar prognoserna för GRAMET. Studien täckte Sverige och sträckte sig över 14 dagar i början av februari, 2017. HARMONIE-AROME visade bäst resultat för temperatur medan GFS gjorde de bästa fuktighetsprognoserna. Vindhastighet och vindriktning undersöktes också och för dem var modellerna ungefär lika bra. Vädret varierade dock inte så mycket under tvåveckorsperioden som dominerades av högtryck. Andra utvärderingar som gjorts av HARMONIE-AROME togs också i beaktande och modellen verkar generellt sett göra bra prognoser. Från samtliga resultat drogs slutsatsen att prognos-produkten skulle underlätta för småplanspiloter samt att HARMONIE-AROME är en lämplig modell att använda för att skapa dess prognoser.
3

Despacho de reativos para regulação de tensão em redes de média tensão com geradores fotovoltaicos / Despacho de reactivos para regulación de tensión en redes de media tensión con generadores foto-voltaicos

Negreiros Terrones, John William 06 September 2017 (has links)
Submitted by JOHN WILLIAM NEGREIROS TERRONES null (johneter@hotmail.com) on 2018-01-19T17:02:53Z No. of bitstreams: 1 DissertaçãoJohn_JB (1).pdf: 14046795 bytes, checksum: deeec72b971c8015d40780ccc3ee8e37 (MD5) / Approved for entry into archive by Cristina Alexandra de Godoy null (cristina@adm.feis.unesp.br) on 2018-01-19T17:54:25Z (GMT) No. of bitstreams: 1 terrones_jwn_me_ilha.pdf: 14046795 bytes, checksum: deeec72b971c8015d40780ccc3ee8e37 (MD5) / Made available in DSpace on 2018-01-19T17:54:25Z (GMT). No. of bitstreams: 1 terrones_jwn_me_ilha.pdf: 14046795 bytes, checksum: deeec72b971c8015d40780ccc3ee8e37 (MD5) Previous issue date: 2017-09-06 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Neste trabalho, propõe-se uma metodologia baseada nas incertezas da radiação solar para prever o despacho de demanda e reativos nos sistemas de distribuição radial com geradores fotovoltaicos (GFs). O objetivo dessa metodologia é melhorar o perfil da magnitude de tensão para o dia seguinte, sujeito a certas restrições operativas do sistema elétrico de distribuição. No desenvolvimento dos algoritmos de solução são considerados geradores distribuídos que têm forte dependência das variações da fonte primária de energia (principalmente sistemas fotovoltaicos), ou seja, os limites de injeção de potência dos GFs dependem das incertezas da radiação solar. Este grupo de geradores precisa de considerações que incluam as incertezas na geração de energia. Para isso, elaboram-se cenários de radiação baseado na função de distribuição de probabilidade beta. Assim, são realizados fluxos de potência probabilísticos em múltiplos cenários. Leva-se em consideração, os objetivos a serem otimizados por meio de técnicas multiobjetivo, observando principalmente, os desvios da tensão nos nós e as perdas de potência nas linhas do sistema. A metodologia proposta foi implementada em linguagem de modelagem algébrica com o AMPL para descrever o problema de otimização e resolvido usando o solver comercial CPLEX. Os sistemas testes de 34 e 123 nós foram utilizados para avaliar os modelos matemáticos e a eficiência da técnica de solução proposta para o problema de controle dos sistemas de distribuição radiais com GFs. / This work presents a methodology based on uncertainties of solar radiation to predict demand and reactive dispatch in the radial distribution systems with photovoltaic generators (GFs). The objective is to improve the voltage magnitude profile for a day ahead, subjecting to operation constraints of distribution system. In order to evaluate the optimization criteria for distribution networks, active power balance equations have to be solved. It is considered that distributed generators have a high coherence to variations of the primary energy source (mainly photovoltaic systems), where, the power injection limits of the GFs depend on the uncertainties of the solar radiation. Uncertainties in generation are needed to be considered for this type of generator. Thus, the beta probability distribution function has been employed to include different radiation scenarios in the problem formulation. The aim of this research evolves the development of an optimization tool to predict the reactive power dispatch of GFs considering the uncertainties of solar radiation. For this purpose, the probabilistic power flow is performed under various scenarios. The Multiobjective optimization problem is formulated by including the buses (nodes) voltage deviations and the power losses of distribution lines in two different objective functions. The proposed methodology was implemented in AMPL mathematical model language and solved using the commercial CPLEX solver. The 34 and 123 nodes test systems are applied to show efficiency of presented mathematical models, i.e. control of radial distribution systems with GFs, and the proposed solution method.
4

Despacho de reativos para regulação de tensão em redes de média tensão com geradores fotovoltaicos /

Negreiros Terrones, John William January 2017 (has links)
Orientador: Antonio Padilha Feltrin / Resumo: Neste trabalho, propõe-se uma metodologia baseada nas incertezas da radiação solar para prever o despacho de demanda e reativos nos sistemas de distribuição radial com geradores fotovoltaicos (GFs). O objetivo dessa metodologia é melhorar o perfil da magnitude de tensão para o dia seguinte, sujeito a certas restrições operativas do sistema elétrico de distribuição. No desenvolvimento dos algoritmos de solução são considerados geradores distribuídos que têm forte dependência das variações da fonte primária de energia (principalmente sistemas fotovoltaicos), ou seja, os limites de injeção de potência dos GFs dependem das incertezas da radiação solar. Este grupo de geradores precisa de considerações que incluam as incertezas na geração de energia. Para isso, elaboram-se cenários de radiação baseado na função de distribuição de probabilidade beta. Assim, são realizados fluxos de potência probabilísticos em múltiplos cenários. Leva-se em consideração, os objetivos a serem otimizados por meio de técnicas multiobjetivo, observando principalmente, os desvios da tensão nos nós e as perdas de potência nas linhas do sistema. A metodologia proposta foi implementada em linguagem de modelagem algébrica com o AMPL para descrever o problema de otimização e resolvido usando o solver comercial CPLEX. Os sistemas testes de 34 e 123 nós foram utilizados para avaliar os modelos matemáticos e a eficiência da técnica de solução proposta para o problema de controle dos sistemas de distribuição radia... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: This work presents a methodology based on uncertainties of solar radiation to predict demand and reactive dispatch in the radial distribution systems with photovoltaic generators (GFs). The objective is to improve the voltage magnitude profile for a day ahead, subjecting to operation constraints of distribution system. In order to evaluate the optimization criteria for distribution networks, active power balance equations have to be solved. It is considered that distributed generators have a high coherence to variations of the primary energy source (mainly photovoltaic systems), where, the power injection limits of the GFs depend on the uncertainties of the solar radiation. Uncertainties in generation are needed to be considered for this type of generator. Thus, the beta probability distribution function has been employed to include different radiation scenarios in the problem formulation. The aim of this research evolves the development of an optimization tool to predict the reactive power dispatch of GFs considering the uncertainties of solar radiation. For this purpose, the probabilistic power flow is performed under various scenarios. The Multiobjective optimization problem is formulated by including the buses (nodes) voltage deviations and the power losses of distribution lines in two different objective functions. The proposed methodology was implemented in AMPL mathematical model language and solved using the commercial CPLEX solver. The 34 and 123 nodes test systems a... (Complete abstract click electronic access below) / Mestre
5

Vývoj veřejného dluhu v České republice / Development of public debt in Czech republic

Dvořáková, Eva January 2016 (has links)
The subject of this diploma thesis is to analyse the development of public debt in the Czech Republic between years 1993 and 2014. The text is divided into two main parts, the section about theoretical basis of this topic and the section which contains practical knowledge about specific aspects of the Czech public sector. The theoretical part briefly defines basic terms and facts of the public debt, such as public sector, budgetary system and public debt classification. The second part focuses on real-life functioning of the Czech public sector, so there are introduced Czech budgetary system and budget process and various methodological frameworks for debt analyses. The final and most significant part of the thesis deals with the real values of state, municipality and government indebtedness, emphasis is placed on the development trends.
6

Bipolar nitrogen-doped graphene frameworks as high-performance cathodes for lithium ion batteries

Huang, Yanshan, Wu, Dongqing, Dianat, Arezoo, Bobeth, Manferd, Huang, Tao, Mai, Yiyong, Zhang, Fan, Cuniberti, Gianaurelio, Feng, Xinliang 17 July 2017 (has links) (PDF)
Hierarchically porous nitrogen-doped graphene frameworks (N-GFs) are fabricated through the ice-templating of GO with polyethylenimine and the thermal treatment of the resultant hybrids. As cathode materials in lithium ion batteries (LIBs), the obtained N-GFs exhibit an outstanding specific capacity of 379 mA h g−1 at 0.5 A g−1 for 2500 cycles. Even at an ultrahigh current density of 5 A g−1, the N-GFs maintain a capacity of 94 mA h g−1, superior to that of most reported LIB cathode materials. The experimental results and quantum mechanics calculations suggest that pyridinic-like N and pyridinic N-oxide in graphene are responsible for the excellent cathodic performance of the bipolar N-GFs by providing fast surface faradaic reactions with both p- and n-doped states.
7

Bipolar nitrogen-doped graphene frameworks as high-performance cathodes for lithium ion batteries

Huang, Yanshan, Wu, Dongqing, Dianat, Arezoo, Bobeth, Manferd, Huang, Tao, Mai, Yiyong, Zhang, Fan, Cuniberti, Gianaurelio, Feng, Xinliang 17 July 2017 (has links)
Hierarchically porous nitrogen-doped graphene frameworks (N-GFs) are fabricated through the ice-templating of GO with polyethylenimine and the thermal treatment of the resultant hybrids. As cathode materials in lithium ion batteries (LIBs), the obtained N-GFs exhibit an outstanding specific capacity of 379 mA h g−1 at 0.5 A g−1 for 2500 cycles. Even at an ultrahigh current density of 5 A g−1, the N-GFs maintain a capacity of 94 mA h g−1, superior to that of most reported LIB cathode materials. The experimental results and quantum mechanics calculations suggest that pyridinic-like N and pyridinic N-oxide in graphene are responsible for the excellent cathodic performance of the bipolar N-GFs by providing fast surface faradaic reactions with both p- and n-doped states.
8

An analysis of a dust storm impacting Operation Iraqi Freedom, 25-27 March 2003

Anderson, John W. 12 1900 (has links)
Approved for public release; distribution in unlimited. / On day five of combat operations during Operation IRAQI FREEDOM, advances by coalition forces were nearly halted by a dust storm, initiated by the passage of a synoptically driven cold front. This storm impacted ground and air operations across the entire Area of Responsibility, and delayed an impending ground attack on the Iraqi capital. Military meteorologists were able to assist military planners in mitigating at least some of the effects of this storm. This thesis examines the synoptic conditions leading to the severe dust storm, evaluates the numerical weather prediction model performance in predicting the event, and reviews metrics pertaining to the overall impacts on the Operation IRAQI FREEDOM combined air campaign. In general, the numerical model guidance correctly predicted the location and onset of the dust storms on 25 March, 2003. As a result of this forecast guidance, mission planners were able to front load Air Tasking Orders with extra sorties prior to the onset of the dust storm, and were able to make changes to planned weapons loads, favoring GPS-guided munitions. / Captain, United States Air Force
9

Dedicated, virally-inactivated, platelet lysates and platelet microparticles in regenerative medicine and neuroprotective therapies / Lysats plaquettaires viro-inactivés et microparticules pour médecine régénérative et neuroprotection

Chou, Ming-Li 08 December 2016 (has links)
Garantir la qualité des produits sanguins est crucial. Les lysats plaquettaires (LP) riches en facteurs de croissance (FC) s’imposent comme le complément idéal pour l’expansion ex vivo des cellules souches, et comme produit thérapeutique pour la régénération cellulaire. L’intérêt est croissant pour les microparticules (MPs) extracellulaires, mais l’expression de phosphatidylsérine à leur surface peut induire des effets thrombotiques et inflammatoires. L’autre risque transfusionnel, la transmission de virus, dont le virus de l’hépatite C (VHC), est maîtrisable par traitements de réduction virale par solvant/détergent (S/D), chauffage, ou nanofiltration. Nous avons étudié des technologies de sécurisation des produits sanguins: (a) élimination des MPs par nanofiltration sur filtres de 75 nm et (b) traitements S/D, chauffage à 56°C ou nanofiltration pour inactiver ou éliminer le VHC. Les informations ont été utilisées pour développer des LP utiles en médecine régénérative. L’un d’eux destiné à la neurorégénération, a été préparé en émettant l’hypothèse qu’un lysat de culot plaquettaire (LCP) enrichi en facteurs neurotrophiques et dépourvu de protéines plasmatiques se montrerait efficace contre les maladies neurodégénératives. Nos résultats montrent que la nanofiltration sur des filtres de 75 nm préserve la composition en protéines plasmatiques, et le pouvoir hémostatique. La nanofiltration retire les MPs et évite, in vitro, la génération de thrombine. Par ailleurs le traitement S/D à 31°C pour 30 minutes élimine le pouvoir infectieux du VHC. Pris globalement les traitements de nanofiltration et S/D apparaissent donc comme des méthodes de choix pour l’amélioration de la sécurité du plasma vis à vis de risques thrombogènes et infectieux. Nous avons ensuite préparé un LCP appauvri en protéines plasmatiques (dont le fibrinogène) et enrichi en un mélange pléiotrope physiologique de FC destiné à l’administration cérébrale. Les analyses par ELISA et par protéomique ont montré qu’un chauffage de 56°C pour 30 min réduisait le contenu en protéines et modifiait favorablement la composition relative en facteurs neurotrophiques. Par ailleurs le chauffage améliore l’action neuroprotectrice et, associé aux traitements S/D et de nanofiltration, contribue à l’inactivation du VHC. Ce LCP exerce une neuroprotection élevée dans des modèles de la maladie de Parkinson (MP) tout à la fois (a) in vitro (cellules LUHMES différentiées en neurones dopaminergiques et exposées au MPP+) et (b) in vivo (souris intoxiquées par MPTP). L’expression de la tyrosine hydroxylase (TH) dans la Substantia nigra pars compacta montre que l’administration intracérébroventriculaire (ICV) ou intranasale (i.n.) apparait comme une option thérapeutique possible des maladies neuro-dégénératives. Les études cellulaires In vitro sur LUHMES et NSC34 ont montré que l’inhibition spécifique des voies signalétiques relayées par AkT et ERK altère l’activité neuroprotectrice du LC. Des événements neuro-inflammatoires pouvant aggraver l’évolution des maladies neurodégénératives, nous avons vérifié que le LCP n’induit pas de marqueurs inflammatoires (COX-2, iNOS) chez des cellules microgliales BV2, et pouvait même diminuer celle de COX-2 après exposition à des lipopolysaccharides. De plus, nous avons identifié que le LCP contenait 1.7 x 1012 MP/mL d’une taille moyenne de 160 nm. Isolées, ces MPs pourraient exercer un rôle neuroprotecteur des cellules LUHMES exposées à des agents neurotoxiques. En conclusion, nos résultats montrent la faisabilité technique à préparer des lysats plaquettaires viro-inactivés pour des usages dans le domaine de la médecine régénérative, y compris comme agent neuroprotecteur du système nerveux central. / Ensuring quality and safety of blood products is crucial. Platelet lysates (PL) rich in growth factors (GFs) have emerged as ideal clinical-grade supplement for ex vivo expansion of mesenchymal stromal cells, and as therapeutic product promote cellular regeneration. Interest for platelet extracellular microparticles (MPs) is growing but expression of phosphatidylserine on their surface may cause thrombotic and inflammatory side effects. Another transfusional risk, transmission of viruses, including hepatitis C virus (HCV), can be fully controlled by dedicated viral reduction methods as solvent/detergent (S/D) or heat treatments, or nanofiltration. We have evaluated technologies to secure therapeutic blood products: (a) removal of MPs by 75nm-nanofiltration and (b) inactivation/removal of HCV by S/D or 56°C heat treatments, or nanofiltration. Data have been used to develop LP of interest for regenerative medicine. In particular, one, targeting neuroregenerative applications, has been prepared based on the hypothesis that a platelet pellet lysate (PPL) enriched in multiple neurotrophic growth factors and depleted of plasma proteins could exert potent neuroprotective actions in neurodegenerative disease models. Our data show that 75 nm-plasma nanofiltration preserved plasma protein biochemical profile, and hemostatic power. Nanofiltration removes MPs and avoids in vitro the generation of thrombin. In addition, the S/D treatment at 31°C for 30 minutes fully inactivates HCV infectivity. Therefore, altogether, nanofiltration and S/D emerge as choice procedures to improve the safety of plasma for thrombogenic and infectious risks. We have then prepared a PPL depleted of plasma proteins (in particular fibrinogen), and rich in a physiological pleiotropic mixture of neurotrophins for brain administration. ELISA and proteomics studies revealed that the heat-treatment at 56°C for 30 min decreased the protein content and favorably modified the relative composition in neurotrophic factors. Heat-treatment improved the neuroprotective activity and, together with S/D and nanofiltration contributed to HCV inactivation. This PPL exerted strong neuroprotective effects in Parkinson’s disease (PD) models (a) in vitro, using LUHMES cells exposed to MPP+ neurotoxin, and (b) in vivo, in mice intoxicated by MPTP neurotoxin. Expression of tyrosine hydroxylase (TH) in the Substantia nigra pars compacta indicated that brain delivery by intracerebroventricular (ICV) or intranasal (i.n.) administration may be a therapeutic option for disease-modifying strategies of neurodegenerative diseases. In vitro studies in LUHMES and NSC34 cells showed that specific inhibition of signal transduction pathways through AkT and ERK influenced PPL neuroprotective function. Since neuro-inflammation detrimentally affects neurodegenerative disorders, we verified that the PPL did not stimulate the release of inflammatory markers (e.g. COX-2, iNOS) by BV2 microglial cells in culture, and could even restrict COX-2 expression when cells were exposed to LPS. In addition, the PPL was found to contain 1.7 x 1012 MP/mL with a mean size of 160 nm. These MPs may exert neuroprotective activity on LUHMES cells exposed to neurotoxins. Altogether, our data demonstrate the technical feasibility of developing virally-safe customized platelet lysate preparations with specific applications for cell therapy and regenerative medicine, in particular as neuroprotective agents of the central nervous system.
10

Structural Health Monitoring Of Composite Helicopter Rotor Blades

Pawar, Prashant M 05 1900 (has links)
Helicopter rotor system operates in a highly dynamic and unsteady aerodynamic environment leading to severe vibratory loads on the rotor system. Repeated exposure to these severe loading conditions can induce damage in the composite rotor blade which may lead to a catastrophic failure. Therefore, an interest in the structural health monitoring (SHM) of the composite rotor blades has grown markedly in recent years. Two important issues are addressed in this thesis; (1) structural modeling and aeroelastic analysis of the damaged rotor blade and (2) development of a model based rotor health monitoring system. The effect of matrix cracking, the first failure mode in composites, is studied in detail for a circular section beam, box-beam and two-cell airfoil section beam. Later, the effects of further progressive damages such as debonding/delamination and fiber breakage are considered for a two-cell airfoil section beam representing a stiff-inplane helicopter rotor blade. It is found that the stiffness decreases rapidly in the initial phase of matrix cracking but becomes almost constant later as matrix crack saturation is reached. Due to matrix cracking, the bending and torsion stiffness losses at the point of matrix crack saturation are about 6-12 percent and about 25-30 percent, respectively. Due to debonding/delamination, the bending and torsion stiffness losses are about 6-8 percent and about 40-45 percent after matrix crack saturation, respectively. The stiffness loss due to fiber breakage is very rapid and leads to the final failure of the blade. An aeroelastic analysis is performed for the damaged composite rotor in forward flight and the numerically simulated results are used to develop an online health monitoring system. For fault detection, the variations in rotating frequencies, tip bending and torsion response, blade root loads and strains along the blade due to damage are investigated. It is found that peak-to-peak values of blade response and loads provide a good global damage indicator and result in considerable data reduction. Also, the shear strain is a useful indicator to predict local damage. The structural health monitoring system is developed using the physics based models to detect and locate damage from simulated noisy rotor system data. A genetic fuzzy system (GFS) developed for solving the inverse problem of detecting damage from noise contaminated measurements by hybridizing the best features of fuzzy logic and genetic algorithms. Using the changes in structural measurements between the damaged and undamaged blade, a fuzzy system is generated and the rule-base and membership functions optimized by genetic algorithm. The GFS is demonstrated using frequency and mode shape based measurements for various beam type structures such as uniform cantilever beam, tapered beam and non-rotating helicopter blade. The GFS is further demonstrated for predicting the internal state of the composite structures using an example of a composite hollow circular beam with matrix cracking damage mode. Finally, the GFS is applied for online SHM of a rotor in forward flight. It is found that the GFS shows excellent robustness with noisy data, missing measurements and degrades gradually in the presence of faulty sensors/measurements. Furthermore, the GFS can be developed in an automated manner resulting in an optimal solution to the inverse problem of SHM. Finally, the stiffness degradation of the composite rotor blade is correlated to the life consumption of the rotor blade and issues related to damage prognosis are addressed.

Page generated in 0.4124 seconds