• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 60
  • 48
  • 11
  • 9
  • 9
  • 8
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 181
  • 67
  • 56
  • 37
  • 21
  • 17
  • 17
  • 17
  • 16
  • 16
  • 14
  • 14
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Die endothelialen Effekte des atrialen natriuretischen Peptids (ANP) sind an der akuten Regulation des arteriellen Blutdrucks und des Blutvolumens beteiligt / The endothelial effects of the atrial natriuretic peptide (ANP) are involved in the acute regulation of blood pressure and blood volume

Börner, Sebastian January 2012 (has links) (PDF)
Mit dieser Arbeit konnte erstmals gezeigt werden, dass ANP über die Aktivierung der endothelialen Guanylyl Cyklase A (GC-A) akut die Permeabilität für Albumin an postkapillären Venolen stimuliert. Durch diesen Mechanismus ist ANP neben der chronischen auch an der akuten Reduktion des Plasmavolumens und des systolischen arteriellen Blutdrucks beteiligt. Aufgrund der wichtigen extrarenalen endothelialen Effekte stellt ANP das einzige hypovolämische Hormon im Organismus dar und ist somit ein bedeutender physiologischer Regulator der transvaskulären Volumenhomöostase. Jedoch sind diese Effekte deutlich von denen der vasoaktiven Substanzen, wie z. B. Histamin oder Thrombin und anderer diuretisch wirkender Substanzen, wie z. B. Schleifendiuretika, abzugrenzen. Vermutlich wird der permeabilitätssteigernde Effekt von ANP durch die beobachtete gesteigerte PKG- und PKA-abhängige Phosphorylierung von VASP vermittelt, wodurch möglicherweise die parazelluläre Permeabilität selektiv für Albumin gesteigert wird. Den gegenregulatorischen Mechanismus zur endothelialen GC-A stellt der NPR-C dar. Durch diesen erfolgt eine verminderte PKA- und PKG-abhängige Phosphorylierung von VASP, was durch die ANP-Infusion an EC GC-A KO Mäusen beobachtet wurde und zu einer Reduktion der physiologischen Permeabilität für Albumin an den postkapillären Venolen führen könnte. Somit wird wahrscheinlich durch diesen Mechanismus das Plasmavolumen, aber nicht der systolische arterielle Blutdruck in vivo gesteigert und eine übersteigerte Reaktion der GC-A verhindert. Aufgrund der enormen Bedeutung des ANP/GC-A Systems für die Modulation der endothelialen Permeabilität und die akuten sowie chronischen Regulation des Plasmavolumens und arteriellen Blutdrucks besitzt es bei Dysfunktion eine bedeutende klinische Relevanz. Denn durch eine verminderte Sekretion von ANP oder der Dysfunktion des endothelialen GC-A-Rezeptors, durch verschiedene Single Nucleotid Polymorphismen (SNPs) oder Desensitisierung, kann dieses System an der Entstehung der essentiellen Hypertonie oder der Hypervolämie bzw. Hypernatriämie bei herzinsuffizienten Patienten beteiligt sein. / Atrial natriuretic peptide (ANP) regulates arterial blood pressure and volume. Its guanylyl cyclase-A (GC-A) receptor is expressed in vascular endothelium and mediates increases in cGMP, but the functional relevance is controversial. Notably, mice with endothelial-restricted GC-A deletion [EC GC-A knockout (KO) mice] exhibit significant chronic hypervolemic hypertension. The present study aimed to characterize the endothelial effects of ANP and their relevance for the acute regulation of intravascular fluid volume. We studied the effect of ANP on microvascular permeability to fluorescein isothiocyanate-labeled albumin (BSA) using intravital microscopy on mouse dorsal skinfold chambers. Local superfusion of ANP (100 nM) increased microvascular fluorescein isothiocyanate-BSA extravasation in control but notECGC-AKO mice. Intravenous infusion of synthetic ANP (500 ng/kg min) caused immediate increases in hematocrit in control mice, indicating intravascular volume contraction. In EC GC-A KO mice, the hematocrit responses were not only abolished but even reversed. Furthermore, acute vascular volume expansion, which caused release of endogenous cardiac ANP, did not affect resting central venous pressure of control mice but rapidly and significantly increased central venous pressure of EC GC-A KO mice. In cultured lung endothelial cells, ANP provoked cGMP-dependent protein kinase I-mediated phosphorylation of vasodilator-stimulated phosphoprotein. We conclude that ANP, via GC-A, enhances microvascular endothelial macromolecule permeability in vivo. This effect might be mediated by cGMP-dependent protein kinase I-dependent phosphorylation of vasodilator-stimulated phosphoprotein. Modulation of transcapillary protein and fluid transport may represent one of the most important hypovolemic actions of ANP. (Endocrinology 149: 4193–4199, 2008)
42

Role of the Phosphodiesterase (PDE) System in Mediating the Effects of Chronic Antidepressant Treatment in Rat Brain

Reierson, Gillian W. 02 March 2010 (has links)
Cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) act as second messengers in intracellular signaling cascades to influence neuronal responses. Hippocampal cAMP signaling is thought to underlie the pathophysiology of major depressive disorder (MDD) and antidepressant action; however, little is known about the possible role of cGMP signaling. Furthermore, circadian rhythm disturbances can occur as part of the clinical symptoms of MDD and resolve with antidepressant therapy. The pineal gland is relevant to circadian rhythms as it secretes the hormone melatonin following activation of cAMP signaling and the rate-limiting enzyme for its synthesis, arylalkylamine N-acetyltransferase (AA-NAT). Little is known about the contribution of the phosphodiesterase (PDE) system to antidepressant-induced alterations in pineal cAMP signaling and melatonin synthesis. There is a need to clarify the trajectory of cAMP and cGMP concentrations, their synthesis by cyclases, and degradation by PDEs to understand the role of cyclic mononucleotide signaling in the effect of chronic antidepressant therapy. Using quantitative real-time PCR and enzyme immunoassay, we systematically studied elements of intracellular signaling in the hippocampus of rats chronically treated with imipramine, fluoxetine, and amitriptyline and in the pineal gland of rats treated chronically with fluoxetine. In the hippocampus, we found chronic imipramine downregulated cAMP signaling with decreased cAMP, increased PDEs and decreased adenylate cyclase mRNA. In contrast, repeated fluoxetine and amitriptyline increased hippocampal cGMP signaling, with increased cGMP and decreased PDE mRNA. We conclude that in contrast to the assumption of antidepressant-mediated increases in cAMP levels, increased hippocampal cGMP signaling might underlie the efficacy of chronic antidepressant treatment. A follow up study using cultured embryonic rat hippocampal cells in vitro treated with the PDE type 5 inhibitor, sildenafil, demonstrated increased cAMP content following acute and chronic treatment, indicating either crosstalk between cAMP and cGMP pathways or a non-specific inhibitory effect of sildenafil on other PDEs. In the pineal gland, we found elevated melatonin synthesis with increased pineal AA-NAT mRNA and daytime plasma melatonin and downregulated cAMP signaling with increased PDE and unchanged AC pineal mRNA, and decreased pineal cAMP. We conclude that chronic fluoxetine increases daytime plasma melatonin and pineal AA-NAT mRNA despite downregulated pineal cAMP signaling.
43

Regulación de la formación de GMP cíclico dependiente de óxido nítrico por agentes inflamatorios en células nerviosas

Pedraza Lentino, Carlos E. 05 April 2003 (has links)
El SNC se ve afectado por procesos inflamatorios en respuesta a infecciones bacterianas, a traumatismos y en los procesos relacionados con la patogénesis de enfermedades neurodegenerativos como Parkinson, Alzheimer (EA), esclerosis múltiple (EM) o la demencia asociada al virus de inmunodeficiencia humana (VIH). La reactividad glial y expresión aumentada de citocinas proinflamatorias son características comunes del proceso inflamatorio asociado a las patologías neurodegenerativas. Las citocinas son proteínas de bajo peso molecular (entre 8 y 26 KDa) que se sintetizan en casi todos los tipos celulares. Se han clasificado en proinflamatorias (IL-1b, TNF-a, INF-g, IL-6) y antiinflamatorias (IL-4, IL-10, IL-12). Las citocinas proinflamatorias, a su vez, inducen en las células del SNC la expresión de NOS-2 provocando una producción elevada y sostenida de NO. El NO es sintetizado por las óxido nítrico sintasas (NOS) de las que se han descrito tres isoformas: NOS-1, NOS-2 y NOS-3. La NOS-2 se induce transcripcionalmente en respuesta a mediadores de inflamación generando altas cantidades de NO (nanomoles) por largos periodos de tiempo que pueden tener efectos citotóxicos. La interacción fisiológica más importante del NO es su unión al Fe2+ del grupo hemo de la guanilil ciclasa soluble induciendo la formación de GMP cíclico (cGMP) a partir de GTP. El cGMP ha sido implicado en muchas de las acciones fisiológicas del NO, tanto en tejidos periféricos como el vascular. En el SNC modula procesos de plasticidad sináptica y formación de memoria, procesamiento sensorial y visual, desarrollo cerebral, secreción neuroendocrina y regulación del flujo sanguíneo cerebral. Se sabe muy poco sobre la regulación de la formación de cGMP dependiente de NO en células del SNC durante la neuroinflamación. En el presente trabajo se aportan evidencias que demuestran que agentes inflamatorios como las citocinas IL-1b y TNF-a, el LPS y los péptidos Ab regulan el metabolismo de cGMP en células astrogliales de rata en cultivo, así como en el cerebro de la rata adulta, indicando que durante la neuroinflamación la señalización vía NO-cGMP se encuentra alterada. / Inflammatory processes in response to bacterial infections, tissue insults caused by trauma and the patogenesis of neurodegeneration induced by neural diseases such as Alzheimer's and Parkinson's disease, multiple sclerosis and HIV-associated dementia, affect CNS. In these situations, glial cells (astroglia, microglia and oligodendrocytes) are the ones taking active part in the process of neuroinflammation. Their activation is one of the most important ferature during neuroinflammation. Glial cells activation is characterised by molecular changes such as increased expresión of GFAP (in astrocytes) and a serie of immunoregulator proteins and inflammation mediators in both astro and microglia. Pro (IL-1b, TNF-a, INF-g, IL-6) and anti-inflammatory cytokines (IL-4, IL-10, IL-12) and oxigen reactive species (SOR) participate activelly in the process of neuroinflammation. Cytokines are low molecular weigh proteins (8-26 kDa) sintetised by almost all cell types known as well as the nitric oxide sintase enzymes (NOS). NOS activities (1, 2 and 3) have been detected in most of the CNS cells. NOS-2 is trasncriptionally induced in response to inflammatory agents and combination of pro-inflammatory cytokines, producing long term, high levels of NO having citotoxic effects.Tme main target of NO is the hemo-enzime soluble guanylyl cyclase wich after activation by NO catalises the production of the cyclic nucleotide cGMP. It is not completely known the regulation of NO-dependent cGMP formation during neuroinflammation. In the present work we show evidences of cGMP metabolism regulation by the neuroinflammatory agents IL-1b, TNF-a, lipopolisacharide and betaAmiloyd peptides in rat astroglial cells in culture and in the adult rat brain. Our results suggest that during inflammation in the CNS NO/cGMP signal transduction is affected.
44

The c-di-GMP binding protein, YcgR, is the primary inhibitor of motor function in Salmonella and Escherichia coli.

Nieto, Vincent Michael 18 February 2014 (has links)
E. coli and Salmonella enterica have multiple c-di-GMP cyclases and phosphodiesterases. Absence of a specific phosphodiesterase YhjH impairs motility in both bacteria. yhjH mutants have elevated c-di-GMP levels and require YcgR, a c-di- GMP-binding protein, for motility inhibition. This study demonstrates that YcgR interacts with the flagellar switch-complex proteins FliG and FliM, with the primary interaction site located within FliM. Interaction of YcgR with these proteins induces a CCW motor bias and reduces the efficiency of torque generation, thus inhibiting both chemotaxis and the speed of movement. In collaboration with David Blair’s group at the University of Utah, we propose a "backstop brake" model showing how both effects of YcgR on the motor can result from an initial disruption of the FliM/FliG interface, followed by destabilization and disorganization of the FliG C-terminal domain, which interacts with the stator protein MotA. Support for this order of events i.e. induction of a CCW bias followed by reduction of torque, is provided for S. enterica motors. Data from single motor analysis show that E. coli and S. enterica motors have inherently different properties, but that YcgR is solely responsible for disruption of motor function in both bacteria. This study also finds that E. coli and S. enterica employ c-di-GMP in additional and different pathways to impede motility. Inhibition of motility and chemotaxis may represent a bacterial strategy to prepare for sedentary existence by disfavoring migration away from a substrate on which a biofilm is to be formed. / text
45

Regulation of Xylella fastidiosa virulence factors by c-di-GMP phosphodiesterases

Ancona-Contreras, Veronica 2011 August 1900 (has links)
Xylella fastidiosa is an important bacterial plant pathogen that colonizes the xylem of hundreds of plant species. X. fastidiosa cause Pierce's disease in grapevine by occlusion of the xylem by extensive bacterial colonization, extracellular polysaccharides and the formation of a biofilm. These traits are mediated in a cell-density manner by a cell-to-cell signaling system that transduces a diffusible signaling factor (DSF). This dissertation demonstrates that PD1994, PD1617 and RpfG regulate important traits for bacterial virulence such as cell-cell signaling, biofilm formation and cell aggregation. X. fastidiosa strains harboring mutations in pd1994 (which encodes for a defective GGDEF- EAL-domain protein) and in pd1617 (which encodes for a EAL-domain protein) have increased growth rate, increased biofilm formation, increased plant colonization and decreased cell aggregation. Gene expression analysis of the pd1994 mutant strain showed overexpression of rpfF, which is a DSF synthase, suggesting that PD1994 regulates DSF signaling by repressing rpfF expression. Additionally, the pd1994mutant showed overexpression of pd1617 and rpfG (with EAL and HD-GYP domains respectively, that may be responsible for c-di-GMP turnover), which suggested that this mutant may have low c-di-GMP levels and that PD1994 regulates c-di-GMP turnover by repression of RpfG activity and PD1617 gene expression. X. fastidiosa harboring a mutation on rpfG exhibited decreased biofilm formation while it had no effect in growth or cell aggregation. Together, these results suggest that PD1994, PD1617 and RpfG regulate the DSF regulatory network by controlling the turnover of the second messenger c-di-GMP.
46

NO-cGMP and ROS pathways in regulation of platelet function and megakaryocyte maturation [[Elektronische Ressource]/ vorgelegt von Antonija Jurak Begonja

Jurak Begonja, Antonija. Unknown Date (has links) (PDF)
Würzburg, University, Diss., 2007.
47

Entwicklung und Anwendung fluoreszierender Biosensoren für cAMP und cGMP

Nikolaev, Viacheslav. Unknown Date (has links) (PDF)
University, Diss., 2005--Würzburg. / Parallelt.: Development and application of fluorescent cAMP und cGMP biosensors.
48

Funktionelle Domänen des cGMP-Kinase-Substratproteins IRAG

Antl, Melanie. January 2004 (has links) (PDF)
München, Techn. Universiẗat, Diss., 2004.
49

Studies on the role of cyclic GMP in the regulation of contractility in heart and blood vessels

Ng, David Dean Wing January 1987 (has links)
This thesis is mainly concerned with the study of the role of cGMP in regulating contractility in the heart and blood vessels. A novel cGMP lowering agent, LY83583 (6-anilino-5,8-quinolinedione), was employed as a tool to determine the involvement of cGMP in mediating pharmacological and biological responses in the tissues being examined. In the first study, the role of cGMP in atriopeptin II-induced vascular relaxation was investigated. Atriopeptin II is believed to produce its vasorelaxant effect by virtue of its ability to elevate cGMP. However, the ability of the guanylate cyclase inhibitor, methylene blue, to inhibit the atriopeptin II-induced vasorelaxation has not been conclusively demonstrated. In the present study, LY83583 was found to partially prevent the rise in cGMP level caused by atriopeptin II but was without effect on the extent of the relaxation. This lack of correlation between cGMP elevation and relaxation may indicate either functional compartmentalization of the cyclic nucleotide or the existence of a cGMP-independent pathway for relaxation. Alternatively, the attenuated cGMP level may still be sufficient to elicit full relaxation. The inability of atriopeptin II to relax KC1-contracted bovine coronary arteries agrees with other reports in the literature and may indicate that the drug is less effective in antagonizing vascular responses associated with a marked degree of cell membrane depolarization. In the second study, the role of cGMP in mediating the endothelium-dependent inhibition of contractile responses of vascular tissue to alpha adrenoceptor stimulation was examined. There are reports in the literature that EDRF released from the endothelium elevates cGMP and depresses the response of the vessels to vasoconstrictors such as clonidine and norepinephrine. In the present study, LY83583 was used to examine the role of cGMP in mediating this effect. The treatment with LY83583 significantly lowered basal levels of cGMP and markedly enhanced the contractile response of endothelium-containing rat arteries to clonidine and norepinephrine. cGMP measurements indicate that clonidine did not elevate cGMP levels; hence the drug is unlikely to stimulate EDRF release. On the other hand, the depressant action of LY83583 on basal cGMP levels supports the hypothesis that inhibition of contractile responses may be a result of spontaneous release of EDRF, which results in tonic elevation of cGMP. The ability of 8-bromo-cGMP to reverse LY83583-induced enhancement of contractile responses to clonidine and norepinephrine further supports the involvement of cGMP in EDRF-induced vascular relaxation. In the final study, the role of cGMP in regulating cardiac contractility of amphibian ventricles was examined. The importance of cGMP in controlling mammalian cardiac function is controversial. However, a remarkable correlation between cGMP and contractile force has been reported in hypodynamic frog ventricles, and cAMP and cGMP were reported to act in a reciprocal fashion to regulate contractility. The present investigation attempted to verify whether such a relationship actually exists in the frog ventricles. Carbachol elicited a dose-dependent reduction in contractility without altering cGMP levels. On the contrary, sodium nitroprusside (100µM) did not reduce cardiac contractility despite a significant elevation of cGMP. At 1mM sodium nitroprusside, a huge elevation of cGMP and a small reduction in contractile tension were observed. Qualitatively similar results were obtained with a degraded sample of sodium nitroprusside. cAMP/cGMP ratios were not correlated with contractility. Hence, these findings were inconsistent with those found in earlier studies on hypodynamic frog hearts and do not support the proposed role of cGMP as a second messenger. The disparate findings may be caused by differences in experimental design. Alternatively, functional compartmentalization of cGMP (in the case of sodium nitroprusside) and the involvement of other cGMP-independent pathways (in the case of carbachol) cannot be ruled out. All these findings suggest that cGMP may play a more crucial role in regulating vascular than cardiac contractility. / Pharmaceutical Sciences, Faculty of / Graduate
50

The Role of STM1987 and ArtI in Arginine Response of Salmonella Typhimurium

Mohseni, Deeba 01 May 2022 (has links)
Cyclic-di-GMP, a common bacterial second messenger, has been thought to help develop virulence and biofilms in bacteria, most specifically in Salmonella Typhimurium. By being able to dysregulate cyclic-di-GMP production, virulence may be better combatted. STM1987, an L-arginine-responsive diguanylate cyclase with a periplasmic sensory domain, dimerizes and generates the bacterial second messenger cyclic-di-GMP in response to the amino acid L-arginine in a pathway that also requires the periplasmic L-arginine-binding protein ArtI. Their biochemical responses to L-arginine and when they dimerize could help clarify this pathway, so I sought to develop a periplasmic dimerization sensor to better monitor these biochemical interactions. Similar to STM1987, the ToxR transcriptional regulator from Vibrio cholera is also activated by dimerization. By switching out the periplasmic domain of ToxR for the periplasmic regions of interest, I can better evaluate the cyclic-di-GMP response to L-arginine. This research aims to find the specific responses in this pathway to be able to use this in combatting bacterial virulence. I was able to successfully show that the STM1987 periplasmic domain dimerizes in response to L-arginine, providing an important insight into this signaling pathway.

Page generated in 0.0182 seconds