• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Les récepteurs GPR91 et GPR99 et leur implication dans le développement du système nerveux visuel

Bouchard, Alex 05 1900 (has links)
Les récepteurs couplés aux protéines G (RCPG) démontrent de plus en plus de capacités à activer des mécanismes jusqu’alors associés à des facteurs de transcription ou des molécules d’adhésion. En effet, de nouvelles preuves rapportent qu’ils pourraient également participer au guidage axonal qui est le mécanisme permettant aux axones de cellules nerveuses de rejoindre leur cible anatomique. Le guidage axonal se fait par l’interaction entre les molécules de guidage et une structure particulière présente à l’extrémité de l’axone, le cône de croissance. Par exemple, les RCPGs participent au guidage des cellules ganglionnaires de la rétine (CGR), dont les axones s’étendent de la rétine jusqu’au noyaux cérébraux associés à la vision. Cet effet est observé avec des RCPGs tels que les récepteurs aux cannabinoïdes (CB1 et CB2) et celui du lysophosphatidylinositol, le GPR55. Les RCPGs GPR91 et GPRG99, respectivement récepteurs au succinate et à l’α-cétoglutarate, se trouvent à la surface de ces CGRs, ce qui en font des candidats potentiels pouvant participer au guidage axonal. Dans ce mémoire, l’effet des ligands de ces récepteurs sur la croissance et la navigation des axones des CGRs fut analysé. L’impact produit par ces récepteurs ainsi que leurs ligands sur la morphologie des cônes de croissance fut déterminé en mesurant leur taille et le nombre de filopodes présents sur ces cônes. Pour évaluer le rôle du succinate et de l’a-cétoglutarate sur la croissance globale des axones de CGRs, la longueur totale des projections axonales d’explants rétiniens a été mesurée. L’effet de ces ligands des récepteurs GPR91 et GPR99 sur le guidage axonal a également été évalué en temps réel à l’aide d’un gradient créé par un micro injecteur placé à 45° et à 100µm du cône de croissance. La distribution in vivo des récepteurs GPR91 et GPR99 sur la rétine a été étudié à l’aide d’expériences d’immunohistochimie. Les résultats obtenus indiquent que l’ajout de 100µM de succinate produit une augmentation de la taille des cônes de croissance et du nombre de filopodes présents à leur surface. Il augmente également la croissance des axones. Ce type de réponse fut également observé lorsque les cellules furent soumises à 200µM d’α-cétoglutarate. Fait à noter, les deux récepteurs n’ont pas d’impact sur le guidage axonal. Ces résultats indiquent donc que les agonistes des récepteurs GPR91 et GPR99 augmentent la croissance des cellules ganglionnaires lorsqu’ils sont présents lors du développement. Par contre, ils n’ont pas d’influence sur la direction prise par les cônes de croissance. Ces nouvelles données sont un pas de plus dans la compréhension des mécanismes qui gèrent et participent au développement et la croissance des CGRs, ce qui pourrait donner de nouvelles cibles thérapeutique pouvant mener à la régénération de nerfs optiques endommagés. / G Protein-Coupled Receptors (GPCRs) show a greater role in activating mechanism usually associated to transcription factors or cell adhesion molecules. New evidence shows that some of these receptors have an impact on axon guidance, the mechanism by which neurons’ axons are able to grow from their origin and reach their anatomical target. Guidance is mediated via a structure at the tip of the axon called the growth cone, which can interact with surrounding molecules. Axons from retinal ganglion cells (RCGs) navigating from the retina to the cerebral nuclei associated with vision, are sensitive to some of the GPCR ligands. These GPCRs are the cannabinoid receptors CB1 and CB2 and the GPR55, a receptor for lysophosphatidylinositol. GPR91 and GPR99, respectively receptors for succinate and α-ketoglutarate, are expressed in RGCs making them prime candidates to have an impact on axon guidance. In this thesis, we will test the role of GPR91 and GPR99 ligands on RCG axon growth and guidance. To assess the impact of these receptors and their ligands on axon growth and guidance, first we evaluated their effects on growth cone morphology. To achieve this, we measured growth cone size and filopodia numbers, when exposed to 100 µM of succinate or 200µM of α-ketoglutarate. The effects of these ligands on axon growth were evaluated by measuring the total axon outgrowth from retinal explants. The role of GPR91 and GPR99 on growth cone turning, was determined by exposing a growing axon to a gradient of these ligands, originating from a micropipette situated 100 µm and 45° from the growth cone. The expression of these receptors in the retina was evaluated using immunohistochemistry. Results showed that the addition of 100 µM succinate induced an increase in both growth cone size and filopodia number. It also increased total axon growth. α-ketoglutarate, at a concentration of 200 µM, produced similar results. Noteworthy, both ligands had no effect on growth cone turning. In brief, these results indicate that GPR91 and GPR99 agonists induce an increase in RGC growth when present during development. They, however, have no effects on RGC growth cone turning. These new data provide a better understanding of the mechanisms controlling RGC development.
2

Succinate receptor 1 inhibits mitochondrial respiration in cancer cells addicted to glutamine

Rabe, Philipp, Liebing, Aenne-Dorothea, Krumbholz, Petra, Kraft, Robert, Stäubert, Claudia 14 February 2022 (has links)
Cancer cells display metabolic alterations to meet the bioenergetic demands for their high proliferation rates. Succinate is a central metabolite of the tricarboxylic acid (TCA) cycle, but was also shown to act as an oncometabolite and to specifically activate the succinate receptor 1 (SUCNR1), which is expressed in several types of cancer. However, functional studies focusing on the connection between SUCNR1 and cancer cell metabolism are still lacking. In the present study, we analyzed the role of SUCNR1 for cancer cell metabolism and survival applying different signal transduction, metabolic and imaging analyses. We chose a gastric, a lung and a pancreatic cancer cell line for which our data revealed functional expression of SUCNR1. Further, presence of glutamine (Gln) caused high respiratory rates and elevated expression of SUCNR1. Knockdown of SUCNR1 resulted in a significant increase of mitochondrial respiration and superoxide production accompanied by an increase in TCA cycle throughput and a reduction of cancer cell survival in the analyzed cancer cell lines. Combination of SUCNR1 knockdown and treatment with the chemotherapeutics cisplatin and gemcitabine further increased cancer cell death. In summary, our data implicates that SUCNR1 is crucial for Gln-addicted cancer cells by limiting TCA cycle throughput, mitochondrial respiration and the production of reactive oxygen species, highlighting its potential as a pharmacological target for cancer treatment.
3

Rôle des récepteurs aux protéines G (GPR55, GPR91 et GPR99) dans la croissance et le guidage axonal au cours du développement du système visuel

Cherif, Hosni 09 1900 (has links)
No description available.
4

Rôle du GPR91 dans la réponse à l'hypoxie-ischémie et l'importance de sa localisation intracellulaire

Hamel, David 08 1900 (has links)
L'adaptation à l'environnement est essentielle à la survie cellulaire et des organismes en général. La capacité d'adaptation aux variations en oxygène repose sur des mécanismes de détection de l'hypoxie et une capacité à répondre en amorçant un programme d'angiogenèse. Bien que la contribution du facteur induit par l'hypoxie (HIF) est bien définie dans l'induction d'une telle réponse, d'autres mécanismes sont susceptibles d'être impliqués. Dans cette optique, les études démontrant l'influence du métabolisme énergétique sur le développement vasculaire sont de plus en plus nombreuses. L'un de ces composés, le succinate, a récemment été démontré comme étant le ligand du GPR91, un récepteur couplé aux protéines G. Parmi les différents rôles attribués à ce récepteur, notre laboratoire s'intéressa aux rôles du GPR91 dans la revascularisation observée suite à des situations d'hypoxie dont ceux affectant la rétine. Il existe cependant d'autres conditions pour lesquelles une revascularisation serait bénéfique notamment suite à un stress hypoxique-ischémique cérébral. Nos travaux ont pour objectifs de mieux comprendre le rôle et le fonctionnement de ce récepteur durant le développement et dans le cadre de pathologies affectant la formation de vaisseaux sanguins. Dans un premier temps, nous avons déterminé le rôle du GPR91 dans la guérison suite à un stress hypoxique-ischémique cérébral chez le nouveau-né. Nous montrons que ce récepteur est exprimé dans le cerveau et en utilisant des souris n'exprimant pas le GPR91, nous démontrons que dans un modèle d'hypoxie-ischémie cérébrale néonatal l'angiogenèse prenant place au cours de la phase de guérison dépend largement du récepteur. L'injection intracérébrale de succinate induit également l'expression de nombreux facteurs proangiogéniques et les résultats suggèrent que le GPR91 contrôle la production de ces facteurs. De plus, l'injection de ce métabolite avant le modèle d'hypoxie-ischémie réduit substantiellement la taille de l'infarctus. In vitro, des essaies de transcription génique démontrent qu'à la fois les neurones et les astrocytes répondent au succinate en induisant l'expression de facteurs bénéfiques à la revascularisation. En considérant le rôle physiologique important du GPR91, une seconde étude a été entreprise afin de comprendre les déterminants moléculaires régissant son activité. Bien que la localisation subcellulaire des RCPG ait traditionnellement été considérée comme étant la membrane plasmique, un nombre de publications indique la présence de ces récepteurs à l'intérieur de la cellule. En effet, tel qu'observé par microscopie confocale, le récepteur colocalise avec plusieurs marqueurs du réticulum endoplasmique, que celui-ci soit exprimé de façon endogène ou transfecté transitoirement. De plus, l’activation des gènes par stimulation avec le succinate est fortement affectée en présence d'inhibiteur du transport d'acides organiques. Nous montrons que le profil de facteurs angiogéniques est influencé selon la localisation ce qui affecte directement l'organisation du réseau tubulaire ex vivo. Finalement, nous avons identifié une région conservée du GPR91 qui agit de signal de rétention. De plus, nous avons découvert l'effet de l'hypoxie sur la localisation. Ces travaux confirment le rôle de régulateur maître de l'angiogenèse du GPR91 lors d'accumulation de succinate en condition hypoxique et démontrent pour la première fois l'existence, et l'importance, d'un récepteur intracellulaire activé par un intermédiaire du métabolisme. Ces données pavent donc la voie à une nouvelle avenue de traitement ciblant GPR91 dans des pathologies hypoxiques ischémiques cérébrales et soulèvent l'importance de tenir compte de la localisation subcellulaire de la cible dans le processus de découverte du médicament. / The ability to adapt to the changing environment is essential for the survival of cells and organisms in general. The capacity to adjust to variations in oxygen content not only relies on the ability to sense hypoxia but also depends the time required to induce an angiogenic process. Notwithstanding the important contribution of the hypoxia inducible factor (HIF) in this response, other mechanisms are likely to be involved. Studies that have demonstrated the influence of metabolic compounds on vascular development are increasingly abundant. One of those compounds, succinate, has recently been indentified as the ligand of GPR91, a G-protein-coupled receptor. Amongst the roles of this receptor, our group has been interested in determining its contribution in revascularisation observed following hypoxic events in the retina. Other pathological conditions could benefit from the contribution of GPR91 including cerebral hypoxia-ischemia. Our objective is to better understand the role of this receptor during development and in pathological conditions affecting blood vessel formation. We first, determined the role of GPR91 in revascularisation following cerebral hypoxia-ischemia in the newborn. We show the expression of the receptor in the cerebral cortex. Using mice devoid of GPR91, we demonstrate that angiogenesis normally taking place during the recovery phase is largely dependent upon GPR91. Intracerebral injection of succinate induces the expression of several proangiogenic growth factors by activating GPR91. Furthermore, injection of succinate before cerebral H-I model substantially reduces the infarct size. In vitro, gene transcription shows that neurons and astrocytes respond to succinate and produce factors beneficial to revascularisation. Considering the important physiological role of GPR91, a second study was initiated to better determine the molecular determinants controlling the receptor's activity. The plasma membrane has classically been considered the typical GPCR's location of action but several new publications indicate the presence of such receptors within the cell. We observe, by confocal microscopy, the colocalisation of GPR91 (endogenous or transfected) with several marker of the endoplasmic reticulum. In addition, the gene induction observed when stimulated with succinate is severely affected in presence of the compound probenicid, an organic anion transporter inhibitor. We also demonstrate that the profile of genes expressed is largely dependent on the localisation of the receptor and consequently affects the organization of the tubular network ex vivo. Finally, we have identified a conserved region of GPR91 that acts as a retention signal. Lastly, we have uncovered the consequence of hypoxia affecting the post-translational modification of GPR91 and its change in location from the ER to the plasma membrane. This work confirms the role of GPR91 as a master regulator of angiogenesis in situations where succinate accumulates and demonstrated for the first time the existence, and importance, of an intracellular receptor activated by a metabolic intermediate. These results pave the way for future treatment targeting GPR91 in cerebral hypoxic ischemic pathologies and demonstrate the importance of taking into account the subcellular localisation in the drug discovery process.

Page generated in 0.0203 seconds