• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Real-time Water Waves with Wave Particles

Yuksel, Cem 2010 August 1900 (has links)
This dissertation describes the wave particles technique for simulating water surface waves and two way fluid-object interactions for real-time applications, such as video games. Water exists in various different forms in our environment and it is important to develop necessary technologies to be able to incorporate all these forms in real-time virtual environments. Handling the behavior of large bodies of water, such as an ocean, lake, or pool, has been computationally expensive with traditional techniques even for offline graphics applications, because of the high resolution requirements of these simulations. A significant portion of water behavior for large bodies of water is the surface wave phenomenon. This dissertation discusses how water surface waves can be simulated efficiently and effectively at real-time frame rates using a simple particle system that we call "wave particles." This approach offers a simple, fast, and unconditionally stable solution to wave simulation. Unlike traditional techniques that try to simulate the water body (or its surface) as a whole with numerical techniques, wave particles merely track the deviations of the surface due to waves forming an analytical solution. This allows simulation of seemingly infinite water surfaces, like an open ocean. Both the theory and implementation of wave particles are discussed in great detail. Two-way interactions of floating objects with water is explained, including generation of waves due to object interaction and proper simulation of the effect of water on the object motion. Timing studies show that the method is scalable, allowing simulation of wave interaction with several hundreds of objects at real-time rates.
2

Pusiau skaidrių kūnų apšvietimo modeliavimo metodai trimatėje grafikoje / Partially transparent objects lighting methods in 3D graphics

Vinkelis, Mindaugas 16 July 2008 (has links)
Šiame darbe pateikiamas apšvietimo algoritmas pusiau skaidriems, vientisiems kūnams, kai šviesos sklidimas gali būti išreikštas BTDF, algoritmas pritaikomas spalvotiems šešėliams. Jis yra realaus laiko, ir gali būti pilnai realizuojamas šiuolaikiniuose trimačio vaizdo spartintuvuose. Algoritmas suskaido vaizduojamą objektą į sluoksnius ir kiekviename sluoksnyje saugo informaciją apie tai, kiek šviesos sugeriama tame sluoksnyje, ir kokioje pozicijoje spindulys atsitrenkė į matomą objekto paviršių. Konkretaus taško piešimo metu imama informacija iš atitinkamo sluoksnio (peršviečiamumo žemėlapio) ir šviesos sugėrimo stiprumas tiesiškai interpoliuojamas tarp skirtinguose žemėlapiuose saugomų atstumų. / This thesis focuses on partially transparent objects lighting, where light distribution may be written in BTDF1, algorithm supports multi-colored shadows. It is real-time method and can be fully implemented in modern graphics hardware. Algorithm divides object into layers, in each of them is stored information about how much light is absorbed in that layer, and where light hit visible object surface. On rendering particular point we take appropriate layer (opacity map) and light absorption intensity is linearly interpolated between different distances stored in other opacity maps.
3

An Efficient Method for Computing Excited State Properties of Extended Molecular Aggregates Based on an Ab-Initio Exciton Model

Morrison, Adrian Franklin January 2017 (has links)
No description available.

Page generated in 0.0481 seconds