101 |
Graphene-modified pencil graphite mercury-film electrodes for the determination of trace metals by cathodic adsorptive stripping voltammetryTekenya, Ronald January 2018 (has links)
>Magister Scientiae - MSc / This project focuses on the simple, fast and highly sensitive adsorptive stripping voltammetry
detection of Nickel and Cobalt complexed with DMG and Nioxime respectively at a Reduced
Graphene Oxide modified pencil graphite electrode in water samples. This research as well
demonstrates a novel electrochemically reduced graphene oxide (ERGO)/mercury film (MF)
nanocomposite modified PGE, prepared through successive electrochemical reduction of graphene
oxide (GO) sheets and in-situ plated mercury film. The GO and graphene were characterized using
FT-IR, HR-SEM, HR-TEM, XRD and Raman spectroscopy. The FT-IR results supported by Xray
diffraction analysis confirmed the inclusion of oxygen moieties within the graphitic structure
during the chemical oxidation step. Microscopic and spectroscopic analysis was used to confirm
the stackings of graphene on the pencil electrode. The ERGO-PG-MFE, in combination with a
complexing agents of [dimethylglyoxime (DMG) and Nioxime] and square-wave cathodic
stripping voltammetry (SW-CSV), was evaluated towards the individual determination of Ni2+
and Co2+ respectively and simultaneous determination of both metals from the combination of
DMG and Nioxime mixture. A single-step electrode pre-concentration approach was employed for
the in-situ Hg-film electroplating, metal-chelate complex formation and its non-electrolytic
adsorption at – 0.7 V for the individual analysis of Ni2+ and Co2+. The current response due to
metal-ligand(s) complex reduction were studied as a function of experimental variables;
deposition/accumulation potential, deposition/accumulation time, rotation speed, frequency and
amplitude and carefully optimized for the individual determination of Ni2+and Co2+ and
simultaneous determination of Ni2+ and Co2+ at low concentration levels (μg L-1) in 0.1 M NH3-
NH4Cl buffer solution (pH 9.4) solution. The recorded limit of detection for the individual analysis
of Ni2+and Co2+ was found to be 0.120 μg L-1 and 0.220 μg L-1 respectively, at an accumulation
time of 120 s for both metals. The recorded limit of detection of the simultaneous analysis of Ni2+
and Co2+ was found to be 6.1 μg L-1 and 1.8 μg L-1 respectively. The ERGO-PG-MFE further
demonstrated a highly selective stripping response toward all trace metal analysis. The testing of
the applicability of graphene-based sensor and method in laboratory tap water samples was
evaluated. This electrode was found to be sensitive enough to detect metal ions in the tap water
samples at the 0.2 μg L-1 level for individual analysis and 0.001 μg L-1 for simultaneous, well
below WHO standards.
|
102 |
Nonlinear screening of external charge by doped grapheneGhaznavi, Mahmoudreza 06 April 2010 (has links)
In the rst part of this thesis we discuss some details of properties of graphene
and we explain the tight-binding approach to nd the energy spectrum in graphene.
In the second part of the thesis, we solve a nonlinear integral equation for the electrostatic
potential in doped graphene due to an external charge, arising from a
Thomas-Fermi (TF) model for screening by graphene's electron bands. In particular,
we study the e ects of a nite equilibrium charge carrier density in graphene,
non-zero temperature, non-zero gap between graphene and a dielectric substrate,
as well as the nonlinearity in the band density of states. E ects of the exchange
and correlation interactions are also brie
y discussed for undoped graphene at zero
temperature. Results from the nonlinear model are compared with results from
both the linearized TF model and the dielectric screening model within the random
phase approximation (RPA). In addition, the image potential of the external charge
is evaluated from the solution of the nonlinear integral equation and compared to
the results of linear models. We have found generally good agreement between the
results of the nonlinear TF model and the RPA model in doped graphene, apart
from Friedel oscillations in the latter model. However, relatively strong nonlinear
e ects in the TF model are found to persist even at high doping densities and large
distances of the external charge.
|
103 |
Nonlinear screening of external charge by doped grapheneGhaznavi, Mahmoudreza 06 April 2010 (has links)
In the rst part of this thesis we discuss some details of properties of graphene
and we explain the tight-binding approach to nd the energy spectrum in graphene.
In the second part of the thesis, we solve a nonlinear integral equation for the electrostatic
potential in doped graphene due to an external charge, arising from a
Thomas-Fermi (TF) model for screening by graphene's electron bands. In particular,
we study the e ects of a nite equilibrium charge carrier density in graphene,
non-zero temperature, non-zero gap between graphene and a dielectric substrate,
as well as the nonlinearity in the band density of states. E ects of the exchange
and correlation interactions are also brie
y discussed for undoped graphene at zero
temperature. Results from the nonlinear model are compared with results from
both the linearized TF model and the dielectric screening model within the random
phase approximation (RPA). In addition, the image potential of the external charge
is evaluated from the solution of the nonlinear integral equation and compared to
the results of linear models. We have found generally good agreement between the
results of the nonlinear TF model and the RPA model in doped graphene, apart
from Friedel oscillations in the latter model. However, relatively strong nonlinear
e ects in the TF model are found to persist even at high doping densities and large
distances of the external charge.
|
104 |
Development of Electro-active Graphene Nanoplatelets and Composites for Application as Electrodes within SupercapacitorsDavies, Aaron 27 January 2012 (has links)
The mounting concern for renewable energies from ecologically conscious alternatives is growing in parallel with the demand for portable energy storage devices, fuelling research in the fields of electrochemical energy storage technologies. The supercapacitor, also known as electrochemical capacitor, is an energy storage device possessing a near infinite life-cycle and high power density recognized to store energy in an electrostatic double-layer, or through a pseudocapacitance mechanism as a result of an applied potential. The power density of supercapacitors far exceeds that of batteries with an ability to charge and discharge stored energy within seconds. Supercapacitors compliment this characteristic very well with a cycle life in excess of 106 cycles of deep discharge within a wide operational temperature range, and generally require no further maintenance upon integration. Conscientious of environmental standards, these devices are also recyclable.
Electrochemical capacitors are currently a promising candidate to assist in addressing energy storage concerns, particularly in hybridized energy storage systems where batteries and supercapacitors compliment each other’s strengths; however specific challenges must be addressed to realize their potential. In order to further build upon the range of supercapacitors for future market applications, advancements made in nanomaterial research and design are expected to continue the materials development trend with a goal to improve the energy density through the development of a cost-efficient and correspondingly plentiful material. However, it is important to note that the characteristic power performance and exceptional life-cycle should be preserved alongside these efforts to maintain their niche as a power device, and not simply develop an alternative to the average battery. It is with this clear objective that this thesis presents research on an emerging carbon material derived from an abundant precursor, where the investigations focus on its potential to achieve high energy and power density, stability and integration with other electroactive materials.
Activated carbons have been the dominant carbon material used in electric double-layer capacitors since their inception in the early 1970s. Despite a wide range of carbon precursors and activation methods available for the generation of high surface area carbons, difficulties remain in controlling the pore size distribution, pore shape and an interconnected pore structure to achieve a high energy density. These factors have restricted the market growth for supercapacitors in terms of the price per unit of energy storage. Activation procedures and subsequent processes for these materials can also be energy intensive (i.e. high temperatures) or environmentally unfriendly, thus the challenge remains in fabricating an inexpensive high surface-area electroactive material with favourable physical properties from a source available in abundance.
Double-layer capacitive materials researched to replace active carbons generally require properties that include: high, accessible surface-area; good electrical conductivity; a pore size distribution that includes mesopore and micropore; structural stability; and possibly functional groups that lend to energy storage through pseudocapacitive mechanisms. Templated, fibrous and aerogel carbons offer an alternative to activated carbons; however the drawbacks to these materials can include difficult preparation procedures or deficient physical properties with respect to those listed above. In recent years nanostructured carbon materials possessing favourable properties have also contributed to the field.
Graphene nanoplatelet (GNP) and carbon nanotube (CNT) are nanostructured materials that are being progressively explored for suitable development as supercapacitor electrodes. As carbon lattice structured materials either in the form of a 2-dimensional sheet or rolled into a cylinder both of these materials possess unique properties desirable in for electrode development. In the proceeding report, GNPs are investigated as a primary material for the synthesis of electrodes in both a pure and composite form. Three projects are presented herein that emphasize the suitability of GNP as a singular carbon electrode material as well as a structural substrate for additional electroactive materials. Investigation in these projects focuses on the electrochemical activity of the materials for supercapacitor devices, and elucidation of the physical factors which contribute towards the observed capacitance.
An initial study of the GNPs investigates their distinct capacitive ability as an electric double-layer material for thin-film applications. The high electrically conductivity and sheet-like structure of GNPs supported the fabrication of flexible and transparent films with a thickness ranging from 25 to 100 nm. The thinnest film fabricated (25 nm) yielded a high specific capacitance from preliminary evaluation with a notable high energy and power density. Furthermore, fast charging capabilities were observed from the GNP thin film electrodes.
The second study examines the use of CNT entanglements dispersed between GNP to increase the active surface area and reduce contact resistances with thin-film electrodes. Through the use MWNT/GNP and SWNT/GNP composites it was determined that tube aspect ratio influences the resulting capacitive performance, with the formation of micropores in SWNT/GNP yielding favourable results as a composite EDLC.
The third study utilizes electrically conducting polypyrrole (PPy) deposited onto a GNP film through pulse electrodeposition for use as a supercapacitor electrode. Total pulse deposition times were evaluated in terms of their corresponding improvements to the specific capacitance, where an optimal deposition time was discovered. A significant increase to the total specific capacitance was observed through the integration PPy, with the majority charge storage being developed via psuedocapacitive redox mechanisms.
A summary of the studies presented here centers on the development of GNP electrodes for application in high power supercapacitor devices. The potential use for GNP in both pure and composite electrode films is explored for electrochemical activity and capacitive capabilities, with corresponding physical characterization techniques performed to examine influential factors which contribute to the final results. The work emphasizes the suitability of GNP material for future investigations into their application as carbon or carbon composite electrodes in supercapacitor devices.
|
105 |
Epitaxial graphene on silicon carbide: low-vacuum growth, characterization, and device fabricationSprinkle, Michael W. 04 June 2010 (has links)
In the past several years, epitaxial graphene on silicon carbide has been transformed from an academic curiosity of social scientists to a leading candidate material to replace silicon in post-CMOS electronics. This has come with rapid development of growth technologies, improved understanding of epitaxial graphene on the polar faces of silicon carbide, and new device fabrication techniques. The contributions of this thesis include refinement and improved understanding of graphene growth on the silicon- and carbon-faces in the context of managed local silicon partial pressure, high-throughput epitaxial graphene thickness measurement and uniformity characterization by ellipsometry, observations of nearly ideal graphene band structures on rotationally stacked carbon-face multilayer epitaxial graphene, presentation of initial experiments on localized in situ chemical modification of epitaxial graphene for an alternate path to semiconducting behavior, and novel device fabrication methods to exploit the crystal structure of the silicon carbide substrate. The latter is a particularly exciting foray into three dimensional patterning of the substrate that may eliminate the critical problem of edge roughness in graphene nanoribbons.
|
106 |
Thermal transport and photo-induced charge transport in grapheneBenjamin, Daniel 24 August 2011 (has links)
The electronic material graphene has attracted much attention for its unique physical properties such as, linear band structure, high electron mobility, and room temperature ballistic conduction. The possibilities for device applications utilizing graphene show great variety, from transistors for computing to chemical sensors. Yet, there are still several basic physical properties such as thermal conductivity that need to be determined accurately.
This work examines the thermal properties of graphene grown by the chemical vapor deposition technique. The thermoelectric power of graphene is studied in ambient and vacuum environments and is shown to be highly sensitive to surface charge doping. Exploiting this effect, we study the change in thermoelectric power due to introduction of gaseous species. The temperature dependent thermal conductivity of graphene is measured using a comparison method. We show that the major contribution to the thermal conductivity is the scattering of in-plane phonons.
Graphene also shows promise as an optoelectronic material. We probe the Landau level structure of graphene in high magnetic fields using a differential photoconductivity technique. Using this method we observed the lifting of spin and valley degeneracies of the lowest Landau level in graphene.
|
107 |
Graphite oxide and its applications in the preparation of small molecules, polymers, and high performance polymer compositesDreyer, Daniel Robert 27 June 2012 (has links)
Graphite oxide (GO), a carbon material prepared in one step from low cost commercial materials, and graphene oxide have been found to catalyze a wide range of reactions including oxidations, hydrations, and dehydrations, as well as cationic or oxidative polymerizations. Applicable in both small molecule and polymer chemistry, this single, metal-free catalyst shows remarkable breadth, including the combination of the aforementioned reactions in an auto-tandem fashion to form advanced substrates, such as chalcones, from simple starting materials. Some of these reactions, such as the selective oxidation of alcohols to aldehydes, have been shown to be dependent on the presence of molecular oxygen, suggesting that this may be the terminal oxidant. Aside from its eminently valuable reactivity, the use of GO as a catalyst also presents practical advantages, such as its heterogeneous nature, which facilitates separation of the catalyst from the desired product.
The use of this simple material in synthetic chemistry, as well as others like it, is distinct from other forms of catalysis in that the active species is carbon-based, heterogeneous and metal-free (as confirmed by ICP-MS and other spectroscopic techniques). This has led us to propose the term “carbocatalyst” to describe such materials. With dwindling supplies of precious metals used in many common organic reactions, the use of inexpensive and widely available carbocatalysts in their place will ensure that commercial processes of fundamental importance can continue unabated. Moreover, as we have shown with just one material, carbons are capable of facilitating a broad range of reactions. / text
|
108 |
Dielectric-graphene integration and electron transport in graphene hybrid structuresFallahazad, Babak 10 September 2015 (has links)
Dielectrics have been an integral part of the electron devices and will likely resume playing a significant role in the future of nanoelectronics. An important step in assessing graphene potential as an alternative channel material for future electron devices is to benchmark its transport characteristics when integrated with dielectrics. Using back-gated and dual gated graphene field-effect transistors with top high-k metal-oxide dielectric, we study the dielectric thickness dependence of the carrier mobility. We show the carrier mobility decreases after deposition of metal-oxide dielectrics by atomic layer deposition (ALD) thanks to the Coulomb scattering by charged point defects in the dielectric. We investigate a novel method for the ALD of metal-oxide dielectrics on graphene, using an ultrathin nucleation layer that enables the realization of graphene field-effect transistors with aggressively scaled gate dielectric thickness. We show the nucleation layer significantly affects the quality of the subsequently deposited dielectric. In addition, we study transport characteristics of double layer systems. We demonstrate heterostructures consisting of two rotationally aligned bilayer graphene with an ultra-thin hexagonal boron nitride dielectric in between fabricated using advanced layer-by-layer transfer as well as layer pickup techniques. We show that double bilayer graphene devices possess negative differential resistance and resonant tunneling in their interlayer current-voltage characteristics in a wide range of temperatures. We show the resonant tunneling occurs either when the charge neutrality points of the two bilayer graphene are energetically aligned or when the lower conduction sub-band of one layer is aligned with the upper conduction sub-band of the opposite layer. Finally, we study the Raman spectra and the magneto-transport characteristics of A-B stacked and rotationally misaligned bilayer graphene deposited by chemical-vapor-deposition (CVD) on Cu. We show that the quantum Hall states (QHSs) sequence of the CVD grown A-B stacked bilayer graphene is consistent with that of natural bilayer graphene, while the sequence of the QHSs in the CVD grown rotationally misaligned bilayer graphene is a superposition of monolayer graphene QHSs. From the magnetotransport measurements in rotationally misaligned CVD-grown bilayer we determine the layer densities and the interlayer capacitance. / text
|
109 |
Development of Electro-active Graphene Nanoplatelets and Composites for Application as Electrodes within SupercapacitorsDavies, Aaron 27 January 2012 (has links)
The mounting concern for renewable energies from ecologically conscious alternatives is growing in parallel with the demand for portable energy storage devices, fuelling research in the fields of electrochemical energy storage technologies. The supercapacitor, also known as electrochemical capacitor, is an energy storage device possessing a near infinite life-cycle and high power density recognized to store energy in an electrostatic double-layer, or through a pseudocapacitance mechanism as a result of an applied potential. The power density of supercapacitors far exceeds that of batteries with an ability to charge and discharge stored energy within seconds. Supercapacitors compliment this characteristic very well with a cycle life in excess of 106 cycles of deep discharge within a wide operational temperature range, and generally require no further maintenance upon integration. Conscientious of environmental standards, these devices are also recyclable.
Electrochemical capacitors are currently a promising candidate to assist in addressing energy storage concerns, particularly in hybridized energy storage systems where batteries and supercapacitors compliment each other’s strengths; however specific challenges must be addressed to realize their potential. In order to further build upon the range of supercapacitors for future market applications, advancements made in nanomaterial research and design are expected to continue the materials development trend with a goal to improve the energy density through the development of a cost-efficient and correspondingly plentiful material. However, it is important to note that the characteristic power performance and exceptional life-cycle should be preserved alongside these efforts to maintain their niche as a power device, and not simply develop an alternative to the average battery. It is with this clear objective that this thesis presents research on an emerging carbon material derived from an abundant precursor, where the investigations focus on its potential to achieve high energy and power density, stability and integration with other electroactive materials.
Activated carbons have been the dominant carbon material used in electric double-layer capacitors since their inception in the early 1970s. Despite a wide range of carbon precursors and activation methods available for the generation of high surface area carbons, difficulties remain in controlling the pore size distribution, pore shape and an interconnected pore structure to achieve a high energy density. These factors have restricted the market growth for supercapacitors in terms of the price per unit of energy storage. Activation procedures and subsequent processes for these materials can also be energy intensive (i.e. high temperatures) or environmentally unfriendly, thus the challenge remains in fabricating an inexpensive high surface-area electroactive material with favourable physical properties from a source available in abundance.
Double-layer capacitive materials researched to replace active carbons generally require properties that include: high, accessible surface-area; good electrical conductivity; a pore size distribution that includes mesopore and micropore; structural stability; and possibly functional groups that lend to energy storage through pseudocapacitive mechanisms. Templated, fibrous and aerogel carbons offer an alternative to activated carbons; however the drawbacks to these materials can include difficult preparation procedures or deficient physical properties with respect to those listed above. In recent years nanostructured carbon materials possessing favourable properties have also contributed to the field.
Graphene nanoplatelet (GNP) and carbon nanotube (CNT) are nanostructured materials that are being progressively explored for suitable development as supercapacitor electrodes. As carbon lattice structured materials either in the form of a 2-dimensional sheet or rolled into a cylinder both of these materials possess unique properties desirable in for electrode development. In the proceeding report, GNPs are investigated as a primary material for the synthesis of electrodes in both a pure and composite form. Three projects are presented herein that emphasize the suitability of GNP as a singular carbon electrode material as well as a structural substrate for additional electroactive materials. Investigation in these projects focuses on the electrochemical activity of the materials for supercapacitor devices, and elucidation of the physical factors which contribute towards the observed capacitance.
An initial study of the GNPs investigates their distinct capacitive ability as an electric double-layer material for thin-film applications. The high electrically conductivity and sheet-like structure of GNPs supported the fabrication of flexible and transparent films with a thickness ranging from 25 to 100 nm. The thinnest film fabricated (25 nm) yielded a high specific capacitance from preliminary evaluation with a notable high energy and power density. Furthermore, fast charging capabilities were observed from the GNP thin film electrodes.
The second study examines the use of CNT entanglements dispersed between GNP to increase the active surface area and reduce contact resistances with thin-film electrodes. Through the use MWNT/GNP and SWNT/GNP composites it was determined that tube aspect ratio influences the resulting capacitive performance, with the formation of micropores in SWNT/GNP yielding favourable results as a composite EDLC.
The third study utilizes electrically conducting polypyrrole (PPy) deposited onto a GNP film through pulse electrodeposition for use as a supercapacitor electrode. Total pulse deposition times were evaluated in terms of their corresponding improvements to the specific capacitance, where an optimal deposition time was discovered. A significant increase to the total specific capacitance was observed through the integration PPy, with the majority charge storage being developed via psuedocapacitive redox mechanisms.
A summary of the studies presented here centers on the development of GNP electrodes for application in high power supercapacitor devices. The potential use for GNP in both pure and composite electrode films is explored for electrochemical activity and capacitive capabilities, with corresponding physical characterization techniques performed to examine influential factors which contribute to the final results. The work emphasizes the suitability of GNP material for future investigations into their application as carbon or carbon composite electrodes in supercapacitor devices.
|
110 |
Propriedades eletrônicas de tricamada de grafeno e nanofitas de carbono tensionadas / Electronic properties of trilayer graphene and strained carbon nanoribbonsSena, Silvia Helena Roberto de January 2012 (has links)
SENA, Silvia Helena Roberto de. Propriedades eletrônicas de tricamada de grafeno e nanofitas de carbono tensionadas. 2012. 112 f. Tese (Doutorado em Física) - Programa de Pós-Graduação em Física, Departamento de Física, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2012. / Submitted by Edvander Pires (edvanderpires@gmail.com) on 2015-10-15T18:11:54Z
No. of bitstreams: 1
2012_tese_shrsena.pdf: 15892821 bytes, checksum: ed3de1e000d2b9d87efc866ee0064b8f (MD5) / Approved for entry into archive by Edvander Pires(edvanderpires@gmail.com) on 2015-10-21T20:35:21Z (GMT) No. of bitstreams: 1
2012_tese_shrsena.pdf: 15892821 bytes, checksum: ed3de1e000d2b9d87efc866ee0064b8f (MD5) / Made available in DSpace on 2015-10-21T20:35:21Z (GMT). No. of bitstreams: 1
2012_tese_shrsena.pdf: 15892821 bytes, checksum: ed3de1e000d2b9d87efc866ee0064b8f (MD5)
Previous issue date: 2012 / Graphene is a truly two-dimensional crystal with a gapless linear electronic spectrum at low energies (E<1 eV) which, along with the chiral nature of its charge carriers, is responsible for a variety of unusual properties. As a result of its uniqueness, a great effort has been made in order to understand all its fundamental properties and try to generate a new technology of them. In this thesis we theoretically study two types of graphene-related systems: graphene nanoribbons and trilayer graphene (TLG). Concerning the former, a tight-binding model is used to study the energy band of graphene and graphene ribbon under simple shear strain. The ribbon consists of lines of carbon atoms in an armchair or zigzag orientation where a simple shear strain is applied in the $x$-direction keeping the atomic distances in the $y$-direction unchanged. Such modification in the lattice gives an energy band that differs in several aspects from the one without any shear and with pure shear. The changes in the spectrum depend on the line displacement of the ribbon, and also on the modified hopping parameter. It is also shown that this simple shear strain tunes the electronic properties of both graphene and graphene ribbon, opening and closing energy gaps for different displacements of the system. The modified density of states is also shown. On the latter subject, the continuum model is used in order to investigate the electronic spectrum of three coupled graphene layers (graphene trilayers) in the presence of an external magnetic field. We obtain analytical expressions for the Landau level (LL) spectrum for both the ABA and ABC types of stacking, which exhibit very different dependence on the magnetic field. While the LL spectrum of ABA TLG is found to be a superposition of a monolayer-like and bilayer-like spectra, the ABC TLG present a nearly B^{3/2} field dependence. We show that layer asymmetry and an external gate voltage can strongly influence the properties of the system. In addition, the cyclotron resonance energies, the corresponding oscillator strengths, and the cyclotron absorption spectrum for trilayer graphene are calculated for both ABA and ABC stacking. A gate potential across the stacked layers leads to (1) a reduction of the transition energies, (2) a lifting of the degeneracy of the zero Landau level, and (3) the removal of the electron-hole symmetry. / Grafeno é um cristal bidimensional cujo espectro eletrônico a baixas energias (E <1 eV) apresenta dispersão linear e ausência de gap que, juntamente com a natureza quiral dos portadores de carga, são responsáveis por uma variedade de propriedades incomuns. Como resultado da sua natureza singular, um grande esforço tem sido feito para entender todas as suas propriedades fundamentais e tentar gerar uma nova tecnologia baseada nesse material. Nesta tese, nós realizamos um estudo teórico de dois tipos de sistemas: nanofitas de grafeno e tricamadas grafeno (TCG). No que diz respeito ao primeiro sistema, um modelo de ligação forte (tight-binding) é utilizado para estudar as bandas de energia do grafeno e fitas de grafeno sujeitas a uma tensão de cisalhamento. A fita é constituída por linhas de átomos de carbono cujas bordas estão orientadas nas direções conhecidas como “armchair” ou “zigzag”. Uma tensão de cisalhamento simples é aplicada na direção x de forma que as distâncias interatômicas na direção y são mantidas inalteradas. Esta modificação na rede cristalina origina bandas de energia que diferem em vários aspectos do sistema original sem qualquer deformação. As mudanças no espectro dependem do deslocamento entre linhas adjacentes da fita, bem como do parâmetro de “hopping” modificado. Mostra-se também que este cisalhamento simples modifica as propriedades eletrônicas de ambos os sistemas, fitas de grafeno e grafeno, abrindo e fechando gaps de energia para diferentes deslocamentos do sistema. A densidade de estados modificada também é mostrada. Por fim, o modelo contínuo é utilizado a fim de investigar o espectro electrônico de três camadas de grafeno acopladas (tricamada de grafeno), na presença de um campo magnético externo. Nesse contexto, obtemos expressões analíticas para os nveis de Landau para ambos os tipos de empilhamento: Bernal (ABA) e romboédrico (ABC), verificando-se uma forte dependência dos níveis de energia com o tipo de empilhamento. Embora o espectro de Landau para tricamadas ABA seja uma sobreposição dos espectros de uma monocamada e de uma bicamada, tricamadas com empilhamento ABC apresentam uma dispersão do tipo B3/2 com o campo magnético. Foi mostrado que uma assimetria entre as camadas, que pode ser introduzida por um potencial externo, pode influenciar fortemente as propriedades do sistema. Além disso, as energias de ressonância cíclotron, assim como forças de oscilador correspondentes, e o espectro de absorção para tricamadas de grafeno são calculadas para ambos os tipos de empilhamento. Verificou-se que um potencial de porta aplicado através das camadas leva a (1) uma redução das energias de transição, (2) um levantamento da degenerescência do nível de Landau n=0, e (3) a quebra de simetria entre elétrons e buracos.
|
Page generated in 0.0347 seconds